Skip to main content
Top
Published in:

10-04-2023 | Original Paper

Prediction of thermophysical properties of hybrid nanofluids using machine learning algorithms

Authors: S. Bhanuteja, V. Srinivas, Ch. V. K. N. S. N. Moorthy, S. Jai Kumar, B. Lakshmipathi Lakshmipathi Raju

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Issue 9/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The current research focuses on identifying machine learning algorithms that provide results with high accuracy. The present work is conducted in three phases: conduction of heat transfer experiments, development of correlation, implementation, and comparison of machine learning algorithms with the correlation. Experiments were conducted using hybrid nanofluids with graphene platelets, and carbon nanotubes dispersed in Ethylene glycol-water mixtures. Ethylene glycol percentage in the base fluid varied from 0 to 100%. The nanoparticles are dispersed in concentrations of 0.5, 0.25, 0.125, and 0.0625 weight fractions. The results achieved a 15 to 24% enhancement in thermal conductivity. Results showed viscosity increased in temperatures ranging from 50 to 70 °C but less in higher temperatures. Correlation formulas were developed, and they predicted the thermal conductivity and viscosity values with a maximum deviation of 10%. Machine learning (ML) models have been implemented, and a comparative analysis with correlation results has been conducted. These ML models provided results with a maximum deviation of 4% for viscosity and 3% for thermal conductivity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference Shajan, S., Baiju, V., Krishnakumar, T.S., Andrew, G., Thomas, L., Alex, M., Safeer, M.B.: Experimental investigation on thermophysical properties of Therminol® 55 based hybrid nanofluids with alumina and graphene nanoplatelets for medium temperature applications. Therm. Sci. Eng. Prog. (2021). https://doi.org/10.1016/j.tsep.2021.101116CrossRef Shajan, S., Baiju, V., Krishnakumar, T.S., Andrew, G., Thomas, L., Alex, M., Safeer, M.B.: Experimental investigation on thermophysical properties of Therminol® 55 based hybrid nanofluids with alumina and graphene nanoplatelets for medium temperature applications. Therm. Sci. Eng. Prog. (2021). https://​doi.​org/​10.​1016/​j.​tsep.​2021.​101116CrossRef
10.
20.
go back to reference Zafar Said, N.K., Cakmak, P., Sharma, S., Sundar, L., Inayat, A., Keklikcioglu, O., Li, C.: Synthesis, stability, density, viscosity of ethylene glycol-based ternary hybrid nanofluids: Experimental investigations and model -prediction using modern machine learning techniques. Powder Technol. (2022). https://doi.org/10.1016/j.powtec.2022.117190CrossRef Zafar Said, N.K., Cakmak, P., Sharma, S., Sundar, L., Inayat, A., Keklikcioglu, O., Li, C.: Synthesis, stability, density, viscosity of ethylene glycol-based ternary hybrid nanofluids: Experimental investigations and model -prediction using modern machine learning techniques. Powder Technol. (2022). https://​doi.​org/​10.​1016/​j.​powtec.​2022.​117190CrossRef
Metadata
Title
Prediction of thermophysical properties of hybrid nanofluids using machine learning algorithms
Authors
S. Bhanuteja
V. Srinivas
Ch. V. K. N. S. N. Moorthy
S. Jai Kumar
B. Lakshmipathi Lakshmipathi Raju
Publication date
10-04-2023
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Issue 9/2024
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-023-01293-w

Premium Partner