Skip to main content
Top
Published in: Mechanics of Composite Materials 6/2022

25-01-2022

Predictive Analysis of the Influence of a Polypropylene-Talc Composite Layer on the Ring Stiffness of a Multilayer Plastic Pipe

Authors: H. Khoury Moussa, G. Challita, W. Yared, M. Abi Rizk

Published in: Mechanics of Composite Materials | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ring stiffness of a multilayer sewage pipe reinforced with a composite polypropylene-talc layer, was investigated. The ring stiffnesses of plain and multilayer polypropylene pipes were determined experimentally and analyzed analytically. A finite-element model was developed to predict the ring stiffness of different multilayer pipe configurations as a function of layer thicknesses and talc content in the composite layer. The results obtained well agreed with experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Mori, T. Nonaka, K. Tazaki, M. Koga, Y. Hikosaka, and S. Noda, “Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes,” Water Res., 26, No. 1, 29-37 (1992).CrossRef T. Mori, T. Nonaka, K. Tazaki, M. Koga, Y. Hikosaka, and S. Noda, “Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes,” Water Res., 26, No. 1, 29-37 (1992).CrossRef
2.
go back to reference L. Yuan and S. Kyriakides, “Liner wrinkling and collapse of bi-material pipe under axial compression,” Int. J. Solids Struct., 60-61, 48-59 (2015). L. Yuan and S. Kyriakides, “Liner wrinkling and collapse of bi-material pipe under axial compression,” Int. J. Solids Struct., 60-61, 48-59 (2015).
3.
go back to reference S. Mu, H. Zhou, L. Shi, J. Liu, J. Cai, and F. Wang, “Research on performance and microstructure of sewage pipe mortar strengthened with different anti-corrosion technologies,” IOP Conf. Ser. Mater. Sci. Eng., 250, 012036 (2017).CrossRef S. Mu, H. Zhou, L. Shi, J. Liu, J. Cai, and F. Wang, “Research on performance and microstructure of sewage pipe mortar strengthened with different anti-corrosion technologies,” IOP Conf. Ser. Mater. Sci. Eng., 250, 012036 (2017).CrossRef
4.
go back to reference D. Ridgers, K. Rolf, and Ö. Stål, “Management and planning solutions to lack of resistance to root penetration by modern pvc and concrete sewer pipes,” Arboric. J., 29, No. 4, 269-290 (2006).CrossRef D. Ridgers, K. Rolf, and Ö. Stål, “Management and planning solutions to lack of resistance to root penetration by modern pvc and concrete sewer pipes,” Arboric. J., 29, No. 4, 269-290 (2006).CrossRef
5.
go back to reference M. Farshad and A. Necola, “Strain corrosion of glass fibre-reinforced plastics pipes,” Polym. Test., 23, No. 5, 517-521, (2004).CrossRef M. Farshad and A. Necola, “Strain corrosion of glass fibre-reinforced plastics pipes,” Polym. Test., 23, No. 5, 517-521, (2004).CrossRef
6.
go back to reference F. W. Klaiber, R. A. Lohnes, and T. J. Wipf, Investigation of High-Density Polyethylene Pipe for Highway Applications, Final report: Phase I. Iowa DOT Project HR-373. ISU-ERI-AMES 96407, Iowa State University, College of Engineering, Department of Transportation, Iowa, USA (1996). F. W. Klaiber, R. A. Lohnes, and T. J. Wipf, Investigation of High-Density Polyethylene Pipe for Highway Applications, Final report: Phase I. Iowa DOT Project HR-373. ISU-ERI-AMES 96407, Iowa State University, College of Engineering, Department of Transportation, Iowa, USA (1996).
7.
go back to reference T. Frank, “PE-HD spiral pipes for sewage pipelines–electrofusion socket welding up to DN 1800,” Proceedings of Plastics Pipes, 13 (2001). T. Frank, “PE-HD spiral pipes for sewage pipelines–electrofusion socket welding up to DN 1800,” Proceedings of Plastics Pipes, 13 (2001).
8.
go back to reference O. Chaallal, M. Arockiasamy, and A. Godat, “Laboratory tests to evaluate mechanical properties and performance of various flexible pipes,” J. Perform. Constr. Facil., 29, No. 5, 04014130 (2015). O. Chaallal, M. Arockiasamy, and A. Godat, “Laboratory tests to evaluate mechanical properties and performance of various flexible pipes,” J. Perform. Constr. Facil., 29, No. 5, 04014130 (2015).
9.
go back to reference J. D. N. Martins, E. Freire, and H. Hemadipour, “Applications and market of PVC for piping industry,” Polímeros, 19, No. 1, 58-62 (2009). J. D. N. Martins, E. Freire, and H. Hemadipour, “Applications and market of PVC for piping industry,” Polímeros, 19, No. 1, 58-62 (2009).
10.
go back to reference Y. Yuan, C. Liu, and M. Huang, “The structure and performance of short glass fiber/high-density polyethylene/polypropylene composite pipes extruded using a shearing–drawing compound stress field,” Materials, 12, No. 8, 1323, (2019). Y. Yuan, C. Liu, and M. Huang, “The structure and performance of short glass fiber/high-density polyethylene/polypropylene composite pipes extruded using a shearing–drawing compound stress field,” Materials, 12, No. 8, 1323, (2019).
11.
go back to reference J. Poduška, P. Hutař, A. Frank, J. Kučera, J. Sadílek, G. Pinter, and L. Náhlík “Soil load on plastic pipe and its influence on lifetime,” J. Mech. Eng., 69, No. 3, 101-106 (2019). J. Poduška, P. Hutař, A. Frank, J. Kučera, J. Sadílek, G. Pinter, and L. Náhlík “Soil load on plastic pipe and its influence on lifetime,” J. Mech. Eng., 69, No. 3, 101-106 (2019).
12.
go back to reference N. Jansen, “Polypropylene: a tried and proven pipe material,” 3R international, 113-116 (1998). N. Jansen, “Polypropylene: a tried and proven pipe material,” 3R international, 113-116 (1998).
14.
go back to reference J. Wassenaar, “Polypropylene materials for sewerage & drainage pipes with reduced energy and carbon footprints,” J. Mater. Sci. Eng. B, 6, No. 6, (2016). J. Wassenaar, “Polypropylene materials for sewerage & drainage pipes with reduced energy and carbon footprints,” J. Mater. Sci. Eng. B, 6, No. 6, (2016).
15.
go back to reference R. S. Hadal and R. D. K. Misra, “The influence of loading rate and concurrent microstructural evolution in micrometric talcand wollastonite-reinforced high isotactic polypropylene composites,” Mater. Sci. Eng. A, 374, No. 1-2, 374-389 (2004).CrossRef R. S. Hadal and R. D. K. Misra, “The influence of loading rate and concurrent microstructural evolution in micrometric talcand wollastonite-reinforced high isotactic polypropylene composites,” Mater. Sci. Eng. A, 374, No. 1-2, 374-389 (2004).CrossRef
16.
go back to reference Y. W. Leong, M. B. Abu Bakar, Z. A. Mohd. Ishak, A. Ariffin, and B. Pukanszky, “Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites,” J. Appl. Polym. Sci., 91, No. 5, 3315-3326 (2004). Y. W. Leong, M. B. Abu Bakar, Z. A. Mohd. Ishak, A. Ariffin, and B. Pukanszky, “Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites,” J. Appl. Polym. Sci., 91, No. 5, 3315-3326 (2004).
17.
go back to reference S. Kant, Urmila, J. Kumar, and G. Pundir, “Study of talc filled polypropylene- a concept for improving mechanical properties of polypropylene,” Int. J. Res. Eng. Technol., 02, No. 04, 411-415 (2013). S. Kant, Urmila, J. Kumar, and G. Pundir, “Study of talc filled polypropylene- a concept for improving mechanical properties of polypropylene,” Int. J. Res. Eng. Technol., 02, No. 04, 411-415 (2013).
18.
go back to reference Y. Zhou, V. Rangari, H. Mahfuz, S. Jeelani, and P. K. Mallick, “Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites,” Mater. Sci. Eng. A, 402, No. 1-2, 109-117 (2005).CrossRef Y. Zhou, V. Rangari, H. Mahfuz, S. Jeelani, and P. K. Mallick, “Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites,” Mater. Sci. Eng. A, 402, No. 1-2, 109-117 (2005).CrossRef
19.
go back to reference S. Kobayashi, K. Suna, and T. Yasuda, “Mechanical properties and fracture behavior of nonwoven fabric reinforced plastics for rehabilitation of sewage pipes,” Adv. Compos. Mater., 21, No. 5-6, 413-423 (2012).CrossRef S. Kobayashi, K. Suna, and T. Yasuda, “Mechanical properties and fracture behavior of nonwoven fabric reinforced plastics for rehabilitation of sewage pipes,” Adv. Compos. Mater., 21, No. 5-6, 413-423 (2012).CrossRef
21.
go back to reference P. Hutař, M. Zouhar, L. Náhlík, M. Ševčík, and B. Máša, “Multilayer polymer pipes failure assessment based on a fracture mechanics approach,” Eng. Fail. Anal., 33, 151-162 (2013).CrossRef P. Hutař, M. Zouhar, L. Náhlík, M. Ševčík, and B. Máša, “Multilayer polymer pipes failure assessment based on a fracture mechanics approach,” Eng. Fail. Anal., 33, 151-162 (2013).CrossRef
22.
go back to reference M. Farshad, “Determination of the long-term hydrostatic strength of multilayer pipes,” Polym. Test., 24, No. 8, 1041-1048 (2005).CrossRef M. Farshad, “Determination of the long-term hydrostatic strength of multilayer pipes,” Polym. Test., 24, No. 8, 1041-1048 (2005).CrossRef
23.
go back to reference E. Nezbedová, L. Fiedler, Z. Majer, B. Vlach, and Z. Knésl, “Fracture toughness of multilayer pipes,” Strength Mater., 40, No. 1, 134-137 (2008).CrossRef E. Nezbedová, L. Fiedler, Z. Majer, B. Vlach, and Z. Knésl, “Fracture toughness of multilayer pipes,” Strength Mater., 40, No. 1, 134-137 (2008).CrossRef
25.
go back to reference O. A. González-Estrada, J. S. León, and A. Pertuz, “Influence of the boundary condition on the first ply failure and stress distribution on a multilayer composite pipe by the finite element method,” J. Phys. Conf. Ser., 1159, 012013 (2019).CrossRef O. A. González-Estrada, J. S. León, and A. Pertuz, “Influence of the boundary condition on the first ply failure and stress distribution on a multilayer composite pipe by the finite element method,” J. Phys. Conf. Ser., 1159, 012013 (2019).CrossRef
26.
go back to reference A. C. Seibi, I. Kalfat, A. Molki, T. Webb, and R. Flores, “Shape factor for glass-reinforced plastic pipes with noncircular shapes under diametral loading — an experimental study,” Exp. Tech., 39, No. 4, 64-69, (2015).CrossRef A. C. Seibi, I. Kalfat, A. Molki, T. Webb, and R. Flores, “Shape factor for glass-reinforced plastic pipes with noncircular shapes under diametral loading — an experimental study,” Exp. Tech., 39, No. 4, 64-69, (2015).CrossRef
27.
go back to reference J.-S. Park, W.-H. Hong, W. Lee, J.-H. Park, and S.-J. Yoon, “Pipe stiffness prediction of buried gfrp flexible pipe,” Polym. Polym. Compos., 22, No. 1, 17-24, (2014). J.-S. Park, W.-H. Hong, W. Lee, J.-H. Park, and S.-J. Yoon, “Pipe stiffness prediction of buried gfrp flexible pipe,” Polym. Polym. Compos., 22, No. 1, 17-24, (2014).
28.
go back to reference M. Farshad and A. Necola, “Effect of aqueous environment on the long-term behavior of glass fiber-reinforced plastic pipes,” Polym. Test., 23, No. 2, 163-167, (2004).CrossRef M. Farshad and A. Necola, “Effect of aqueous environment on the long-term behavior of glass fiber-reinforced plastic pipes,” Polym. Test., 23, No. 2, 163-167, (2004).CrossRef
29.
go back to reference J. H. Lee, S. H. Kim, W. C. Choi, and S. J. Yoon, “Pipe stiffness prediction of buried glass fiber reinforced polymer plastic (GFRP) and polymer mortar pipe,” Key Eng. Mater., 753, 3-7, (2017).CrossRef J. H. Lee, S. H. Kim, W. C. Choi, and S. J. Yoon, “Pipe stiffness prediction of buried glass fiber reinforced polymer plastic (GFRP) and polymer mortar pipe,” Key Eng. Mater., 753, 3-7, (2017).CrossRef
30.
go back to reference N. K. Thomas, S. P. George, S. M. John, and S. P. George, “Stress analysis of underground GRP pipe subjected to internal and external loading conditions,” Int. J. Adv. Mech. Eng., 4, No. 4, 435-440 (2014). N. K. Thomas, S. P. George, S. M. John, and S. P. George, “Stress analysis of underground GRP pipe subjected to internal and external loading conditions,” Int. J. Adv. Mech. Eng., 4, No. 4, 435-440 (2014).
31.
go back to reference K. Thornblom, S.F. Nilsson and S.E. Salberg, Durability of Non-Pressure Polypropylene Pipe Materials, SP Report 2007, Borealis AB. SP Technical Research Institute of Sweden; Goteborg (2007). K. Thornblom, S.F. Nilsson and S.E. Salberg, Durability of Non-Pressure Polypropylene Pipe Materials, SP Report 2007, Borealis AB. SP Technical Research Institute of Sweden; Goteborg (2007).
32.
go back to reference Ł. Wierzbicki and M. Szymiczek, “Mechanical and chemical properties of sewage pipes,” Arch. Mater. Sci. Eng., 53, 38-45 (2012). Ł. Wierzbicki and M. Szymiczek, “Mechanical and chemical properties of sewage pipes,” Arch. Mater. Sci. Eng., 53, 38-45 (2012).
33.
go back to reference ISO 9969:2007 (E). Thermoplastics pipes — Determination of ring stiffness, Switzerland (2007) ISO 9969:2007 (E). Thermoplastics pipes — Determination of ring stiffness, Switzerland (2007)
34.
go back to reference BS-EN-14758-1:2012. Plastics piping systems for non-pressure underground drainage and sewerage — Polypropylene with mineral modifiers (PP-MD) Part 1: Specifications for pipes, fittings and the system, London (2012). BS-EN-14758-1:2012. Plastics piping systems for non-pressure underground drainage and sewerage — Polypropylene with mineral modifiers (PP-MD) Part 1: Specifications for pipes, fittings and the system, London (2012).
35.
go back to reference D20 Committee, ASTM D638. Test Method for Tensile Properties of Plastics, ASTM International. US (2014). D20 Committee, ASTM D638. Test Method for Tensile Properties of Plastics, ASTM International. US (2014).
36.
go back to reference F. Fuerle, J. Sienz, M. Innocente, J. F. T. Pittman, V. Samaras and S. Thomas, “Ring stiffness evaluation and optimization of structured- wall PE pipes,” 24th Annu. Meet., PPS-24, Italy (2008). F. Fuerle, J. Sienz, M. Innocente, J. F. T. Pittman, V. Samaras and S. Thomas, “Ring stiffness evaluation and optimization of structured- wall PE pipes,” 24th Annu. Meet., PPS-24, Italy (2008).
37.
go back to reference Abaqus/CAE User’s Guide. Version 6.14. Dassault Systèmes Simulia Corp, Providence, RI. Abaqus/CAE User’s Guide. Version 6.14. Dassault Systèmes Simulia Corp, Providence, RI.
38.
go back to reference EN 1852-1:2009. Plastics piping systems for non-pressure underground drainage and sewerage - Polypropylene (PP) - Part 1: Specifications for pipes, fittings and the system, CEN, Brussels (2009). EN 1852-1:2009. Plastics piping systems for non-pressure underground drainage and sewerage - Polypropylene (PP) - Part 1: Specifications for pipes, fittings and the system, CEN, Brussels (2009).
Metadata
Title
Predictive Analysis of the Influence of a Polypropylene-Talc Composite Layer on the Ring Stiffness of a Multilayer Plastic Pipe
Authors
H. Khoury Moussa
G. Challita
W. Yared
M. Abi Rizk
Publication date
25-01-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 6/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-09996-z

Other articles of this Issue 6/2022

Mechanics of Composite Materials 6/2022 Go to the issue

Premium Partners