Skip to main content
Top

2017 | OriginalPaper | Chapter

Predictive Framework of Human Locomotion Based on Neuromuscular Primitives and Modeling

Authors : Massimo Sartori, José González-Vargas, Strahinja Došen, José L. Pons, Dario Farina

Published in: Converging Clinical and Engineering Research on Neurorehabilitation II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Synthesizing human movement in computational neuro-mechanical models is a complex problem. In this study, we describe a predictive framework that combines computational models of neural, sensory and mechanical processes. Our proposed formulation facilitates the transition towards the design of a new class of bio-mimetic assistive devices that do not rely on explicit representations of task-specific motor control models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Sartori, D.G. Llyod, D. Farina, Neural data-driven musculoskeletal modeling for personalized neurorehabilitation technologies. IEEE Trans. Biomed. Eng. (5), 879−893 (2016) M. Sartori, D.G. Llyod, D. Farina, Neural data-driven musculoskeletal modeling for personalized neurorehabilitation technologies. IEEE Trans. Biomed. Eng. (5), 879−893 (2016)
2.
go back to reference S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRef S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRef
3.
go back to reference J. Gonzalez-Vargas, M. Sartori, S. Dosen, D. Torricelli, J.L. Pons, D. Farina, A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions. Front. Comput. Neurosci. 9(114), 1–14 (2015) J. Gonzalez-Vargas, M. Sartori, S. Dosen, D. Torricelli, J.L. Pons, D. Farina, A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions. Front. Comput. Neurosci. 9(114), 1–14 (2015)
4.
go back to reference M. Sartori, L. Gizzi, D.G. Lloyd, D. Farina, A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Front. Comput. Neurosci. 7, 79 (2013) M. Sartori, L. Gizzi, D.G. Lloyd, D. Farina, A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Front. Comput. Neurosci. 7, 79 (2013)
5.
go back to reference M. Sartori, M. Reggiani, D. Farina, D.G. Lloyd, EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS One 7(12), 1–11 (2012)CrossRef M. Sartori, M. Reggiani, D. Farina, D.G. Lloyd, EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS One 7(12), 1–11 (2012)CrossRef
6.
go back to reference C. Pizzolato, D.G. Lloyd, M. Sartori, E. Ceseracciu, T.F. Besier, B.J. Fregly, M. Reggiani, CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J. Biomech. (2015) C. Pizzolato, D.G. Lloyd, M. Sartori, E. Ceseracciu, T.F. Besier, B.J. Fregly, M. Reggiani, CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J. Biomech. (2015)
7.
go back to reference M. Sartori, M. Reggiani, A.J. van den Bogert, D.G. Lloyd, Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines. J. Biomech. 45(3), 595–601 (2012)CrossRef M. Sartori, M. Reggiani, A.J. van den Bogert, D.G. Lloyd, Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines. J. Biomech. 45(3), 595–601 (2012)CrossRef
8.
go back to reference M. Sartori, D. Farina, D.G. Lloyd, Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47(15), 3613–3621 (2014)CrossRef M. Sartori, D. Farina, D.G. Lloyd, Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47(15), 3613–3621 (2014)CrossRef
9.
go back to reference P. Gerus, M. Sartori, T.F. Besier, B.J. Fregly, S.L. Delp, S. Banks, M.G. Pandy, D.D. D’Lima, D.G. Lloyd, Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 46(16), 2778–2786 (2013)CrossRef P. Gerus, M. Sartori, T.F. Besier, B.J. Fregly, S.L. Delp, S. Banks, M.G. Pandy, D.D. D’Lima, D.G. Lloyd, Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 46(16), 2778–2786 (2013)CrossRef
10.
go back to reference M. Sartori, M. Maculan, C. Pizzolato, M. Reggiani, D. Farina, Modeling and Simulating the Neuromuscular Mechanisms regulating Ankle and Knee Joint Stiffness during Human Locomotion. J. Neurophysiol. 114, 2509–2527 (2015)CrossRef M. Sartori, M. Maculan, C. Pizzolato, M. Reggiani, D. Farina, Modeling and Simulating the Neuromuscular Mechanisms regulating Ankle and Knee Joint Stiffness during Human Locomotion. J. Neurophysiol. 114, 2509–2527 (2015)CrossRef
Metadata
Title
Predictive Framework of Human Locomotion Based on Neuromuscular Primitives and Modeling
Authors
Massimo Sartori
José González-Vargas
Strahinja Došen
José L. Pons
Dario Farina
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-46669-9_46