Skip to main content
Top

2024 | OriginalPaper | Chapter

Predictive Modeling for Compressive Strength in Sustainable Concrete Using Machine Learning Techniques

Authors : Shivatmika Bolla, Yashaswi Matla, Faisal Mehraj Wani, Jayaprakash Vemuri

Published in: Advances in Environmental Sustainability, Energy and Earth Science

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The large-scale fly ash and slag integration in concrete has not only aided in reducing the environmental impact of cement, but also contributed to economic development by reducing waste, cutting carbon emissions, conserving resources, and offering cost-effective, sustainable construction solutions. This aligns with the global shift towards green building practices. However, the optimal mix design of such green concrete continues to remain a significant challenge since it requires optimizing component proportions to achieve several desired attributes of concrete. This study focuses on optimizing concrete mix design by forecasting a crucial variable: 28-day compressive strength. It is analyzed using seven input factors: cement, slag, fly ash, water, superplasticizer (sp), coarse aggregate, and fine aggregate. A dataset comprising 103 data points from the literature is employed to investigate the chosen input and output variables. Various machine learning methods, such as linear regression, logistic regression, decision trees, random forests, support vector machines, k-nearest neighbors, k-means clustering, neural networks, and Gaussian process regression, are evaluated on the gathered dataset. The performance metrics from all machine learning models are compared to evaluate their efficiency. The results from the analysis indicate that Gaussian Process Regression (GPR) demonstrates exceptional accuracy in forecasting 28-day compressive strength, making it a robust choice for precision–critical applications in concrete mix design.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wani FM, Vemuri J, Chenna R (2023) Evaluation of ground motion parameters and seismic response of reinforced concrete buildings from the mw 6.9, 2011 Sikkim earthquake. Geohazard Mechanics 1(2):162–178CrossRef Wani FM, Vemuri J, Chenna R (2023) Evaluation of ground motion parameters and seismic response of reinforced concrete buildings from the mw 6.9, 2011 Sikkim earthquake. Geohazard Mechanics 1(2):162–178CrossRef
2.
go back to reference Palley R (2010) Concrete: a seven-thousand-year history, 1st edn. The Quantuck Lane Press Palley R (2010) Concrete: a seven-thousand-year history, 1st edn. The Quantuck Lane Press
3.
go back to reference Idorn GM (1991) Marine concrete technology. J Coast Res 7(4):1043–1056 Idorn GM (1991) Marine concrete technology. J Coast Res 7(4):1043–1056
5.
go back to reference Sabouni AR (2023) Advances in reinforced concrete integrity and failure. In: Advances in structural integrity and failure. IntechOpen Sabouni AR (2023) Advances in reinforced concrete integrity and failure. In: Advances in structural integrity and failure. IntechOpen
6.
go back to reference Kaptan K, Cunha S, Aguiar J (2024) A review: construction and demolition waste as a novel source for CO2 reduction in Portland cement production for concrete. Sustainability 16(2):585CrossRef Kaptan K, Cunha S, Aguiar J (2024) A review: construction and demolition waste as a novel source for CO2 reduction in Portland cement production for concrete. Sustainability 16(2):585CrossRef
8.
go back to reference de Brito J, Saikia N (2012) Recycled aggregate in concrete: use of industrial, construction and demolition waste. Springer Science & Business Media de Brito J, Saikia N (2012) Recycled aggregate in concrete: use of industrial, construction and demolition waste. Springer Science & Business Media
9.
go back to reference Panarese WC, Allen GE, Cumming S (1991) In: Kosmatka SH (ed) Design and control of concrete mixtures. Canadian Portland Cement Association [CPCA] Panarese WC, Allen GE, Cumming S (1991) In: Kosmatka SH (ed) Design and control of concrete mixtures. Canadian Portland Cement Association [CPCA]
10.
go back to reference Mindess S, Young JF, Darwin D (2003) Concrete, 2nd edn. Prentice Hall Mindess S, Young JF, Darwin D (2003) Concrete, 2nd edn. Prentice Hall
11.
go back to reference Mohammadi A, Ramezanianpour AM (2023) Investigating the environmental and economic impacts of using supplementary cementitious materials (SCMs) using the life cycle approach. J Build Eng 79:107934CrossRef Mohammadi A, Ramezanianpour AM (2023) Investigating the environmental and economic impacts of using supplementary cementitious materials (SCMs) using the life cycle approach. J Build Eng 79:107934CrossRef
13.
go back to reference Alaneme GU, Olonade KA, Esenogho E, Lawan MM (2024) Proposed simplified methodological approach for designing geopolymer concrete mixtures. Sci Rep 14(1):15191CrossRefPubMedPubMedCentral Alaneme GU, Olonade KA, Esenogho E, Lawan MM (2024) Proposed simplified methodological approach for designing geopolymer concrete mixtures. Sci Rep 14(1):15191CrossRefPubMedPubMedCentral
16.
go back to reference Kamath MV, Prashanth S, Kumar M, Tantri A (2024) Machine-learning-algorithm to predict the high-performance concrete compressive strength using multiple data. J Eng Design Technol 22(2):532–560CrossRef Kamath MV, Prashanth S, Kumar M, Tantri A (2024) Machine-learning-algorithm to predict the high-performance concrete compressive strength using multiple data. J Eng Design Technol 22(2):532–560CrossRef
17.
go back to reference Karim R, Islam MH, Datta SD, Kashem A (2024) Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses. Case Stud Constr Material 20:e02828CrossRef Karim R, Islam MH, Datta SD, Kashem A (2024) Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses. Case Stud Constr Material 20:e02828CrossRef
18.
go back to reference Wani FM, Khan MA, Vemuri J (2022) 2D nonlinear finite element analysis of reinforced concrete beams using total strain crack model. Materials Today: Proc 64:1305–1313 Wani FM, Khan MA, Vemuri J (2022) 2D nonlinear finite element analysis of reinforced concrete beams using total strain crack model. Materials Today: Proc 64:1305–1313
19.
go back to reference Neville AM (2011) Properties of concrete, 5th edn. Pearson Neville AM (2011) Properties of concrete, 5th edn. Pearson
20.
go back to reference Mehta PK, Monteiro PJM (2014) Concrete: microstructure, properties, and materials, 4th edn. McGraw-Hill Education Mehta PK, Monteiro PJM (2014) Concrete: microstructure, properties, and materials, 4th edn. McGraw-Hill Education
22.
go back to reference Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press
24.
go back to reference Lechevallier Y, Saporta G (2010) Proceedings of COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, August 22–27, 2010 Keynote, Invited and Contributed Papers. Springer Science & Business MediaCrossRef Lechevallier Y, Saporta G (2010) Proceedings of COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, August 22–27, 2010 Keynote, Invited and Contributed Papers. Springer Science & Business MediaCrossRef
25.
go back to reference Bishop CM (1995) Neural networks for pattern recognition. Oxford University PressCrossRef Bishop CM (1995) Neural networks for pattern recognition. Oxford University PressCrossRef
26.
go back to reference Wani FM, Vemuri J, Rajaram C, Reddy KK (2023) Investigating the efficiency of machine learning algorithms in classifying pulse-like ground motions. J Seismol 27(5):875–899CrossRef Wani FM, Vemuri J, Rajaram C, Reddy KK (2023) Investigating the efficiency of machine learning algorithms in classifying pulse-like ground motions. J Seismol 27(5):875–899CrossRef
27.
go back to reference Wani FM, Vemuri J (2024) Shapelet-informed machine learning classifiers: a path towards precise identification of pulse-like ground motions. J Earth Syst Sci 133(2):96CrossRef Wani FM, Vemuri J (2024) Shapelet-informed machine learning classifiers: a path towards precise identification of pulse-like ground motions. J Earth Syst Sci 133(2):96CrossRef
29.
go back to reference Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University PressCrossRef Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University PressCrossRef
30.
go back to reference Montgomery DC, Peck EA, Vining GG (2015) Introduction to linear regression analysis. John Wiley & Sons Montgomery DC, Peck EA, Vining GG (2015) Introduction to linear regression analysis. John Wiley & Sons
31.
go back to reference Rasmussen CE, Williams CKI (2005) Gaussian processes for machine learning. MIT PressCrossRef Rasmussen CE, Williams CKI (2005) Gaussian processes for machine learning. MIT PressCrossRef
32.
go back to reference Wani FM, Vemuri J, Reddy KK, Rajaram C (2024) Forecasting duration characteristics of near fault pulse-like ground motions using machine learning algorithms. Stoch Env Res Risk A:1–30 Wani FM, Vemuri J, Reddy KK, Rajaram C (2024) Forecasting duration characteristics of near fault pulse-like ground motions using machine learning algorithms. Stoch Env Res Risk A:1–30
Metadata
Title
Predictive Modeling for Compressive Strength in Sustainable Concrete Using Machine Learning Techniques
Authors
Shivatmika Bolla
Yashaswi Matla
Faisal Mehraj Wani
Jayaprakash Vemuri
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-73820-3_13