Preliminary Results on Pulmonary Tuberculosis Detection in Chest X-Ray Using Convolutional Neural Networks | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Preliminary Results on Pulmonary Tuberculosis Detection in Chest X-Ray Using Convolutional Neural Networks

Authors : Márcio Eloi Colombo Filho, Rafael Mello Galliez, Filipe Andrade Bernardi, Lariza Laura de Oliveira, Afrânio Kritski, Marcel Koenigkam Santos, Domingos Alves

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

Tuberculosis (TB), is an ancient disease that probably affects humans since pre-hominids. This disease is caused by bacteria belonging to the mycobacterium tuberculosis complex and usually affects the lungs in up to 67% of cases. In 2019, there were estimated to be over 10 million tuberculosis cases in the world, in the same year TB was between the ten leading causes of death, and the deadliest from a single infectious agent. Chest X-ray (CXR) has recently been promoted by the WHO as a tool possibly placed early in screening and triaging algorithms for TB detection. Numerous TB prevalence surveys have demonstrated that CXR is the most sensitive screening tool for pulmonary TB and that a significant proportion of people with TB are asymptomatic in the early stages of the disease. This study presents experimentation of classic convolutional neural network architectures on public CRX databases in order to create a tool applied to the diagnostic aid of TB in chest X-ray images. As result the study has an AUC ranging from 0.78 to 0.84, sensitivity from 0.76 to 0.86 and specificity from 0.58 to 0.74 depending on the network architecture. The observed performance by these metrics alone are within the range of metrics found in the literature, although there is much room for metrics improvement and bias avoiding. Also, the usage of the model in a triage use-case could be used to validate the efficiency of the model in the future.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Fauci, A.S., Braunwald, E., Kasper, D.L., Harrison, T.R.: Princípios de medicina interna, vol. I. McGraw-Hill Interamericana, Madrid (2009) Fauci, A.S., Braunwald, E., Kasper, D.L., Harrison, T.R.: Princípios de medicina interna, vol. I. McGraw-Hill Interamericana, Madrid (2009)
2.
go back to reference World Health Organization (WHO). Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update World Health Organization (WHO). Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update
3.
go back to reference World Health Organization. Global tuberculosis report 2019. World Health Organization (2019) World Health Organization. Global tuberculosis report 2019. World Health Organization (2019)
4.
go back to reference World Health Organization. Global tuberculosis report 2018. World Health Organization (2018) World Health Organization. Global tuberculosis report 2018. World Health Organization (2018)
5.
go back to reference World Health Organization. Digital health for the End TB Strategy: an agenda for action. World Health Organization (2015) World Health Organization. Digital health for the End TB Strategy: an agenda for action. World Health Organization (2015)
9.
go back to reference Melendez, J., Sánchez, C.I., Philipsen, R.H., et al.: An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci. Rep. 6, 25265 (2016) CrossRef Melendez, J., Sánchez, C.I., Philipsen, R.H., et al.: An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci. Rep. 6, 25265 (2016) CrossRef
10.
go back to reference Rahman, A.A.S., et al.: Modelling the impact of chest X-ray and alternative triage approaches prior to seeking a tuberculosis diagnosis. BMC Infect. Dis. 19(1), 93 (2019) CrossRef Rahman, A.A.S., et al.: Modelling the impact of chest X-ray and alternative triage approaches prior to seeking a tuberculosis diagnosis. BMC Infect. Dis. 19(1), 93 (2019) CrossRef
12.
go back to reference Jaeger, S., Karargyris, A., Candemir, S., et al.: Automatic screening for tuberculosis in chest radiographs: a survey. Quant. Imaging Med. Surg. 3(2), 89–99 (2013) Jaeger, S., Karargyris, A., Candemir, S., et al.: Automatic screening for tuberculosis in chest radiographs: a survey. Quant. Imaging Med. Surg. 3(2), 89–99 (2013)
13.
go back to reference McAdams, H.P., Samei, E., Dobbins III, J., et al.: Recent advances in chest radiography. Radiology 241, 663–683 (2006) CrossRef McAdams, H.P., Samei, E., Dobbins III, J., et al.: Recent advances in chest radiography. Radiology 241, 663–683 (2006) CrossRef
14.
go back to reference Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017) CrossRef Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017) CrossRef
16.
go back to reference Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large chest X-ray image dataset with multi-label annotated reports. arXiv preprint arXiv:​1901.​07441. Accessed 22 Jan 2019 Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large chest X-ray image dataset with multi-label annotated reports. arXiv preprint arXiv:​1901.​07441. Accessed 22 Jan 2019
17.
go back to reference Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017) Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)
18.
go back to reference Jaeger, S., et al.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475 (2014) Jaeger, S., et al.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475 (2014)
20.
go back to reference Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks, June 2017 Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks, June 2017
22.
go back to reference Szegedy, C., et al.: Going deeper with convolutions, September 2014 Szegedy, C., et al.: Going deeper with convolutions, September 2014
24.
go back to reference Grimnes, Ø.K.: End-to-end steering angle prediction and object detection using convolutional neural networks, June 2017 Grimnes, Ø.K.: End-to-end steering angle prediction and object detection using convolutional neural networks, June 2017
25.
go back to reference He, K., et al.: Deep residual learning for image recognition, December 2015 He, K., et al.: Deep residual learning for image recognition, December 2015
29.
go back to reference Maratea, A., Petrosino, A., Manzo, M.: Adjusted f-measure and kernel scaling for imbalanced data learning. Inf. Sci. 257, 331–341 (2014) CrossRef Maratea, A., Petrosino, A., Manzo, M.: Adjusted f-measure and kernel scaling for imbalanced data learning. Inf. Sci. 257, 331–341 (2014) CrossRef
30.
go back to reference Harris, M., et al.: A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest X-rays for pulmonary tuberculosis. PLoS One 14(9), 19 (2019) MathSciNet Harris, M., et al.: A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest X-rays for pulmonary tuberculosis. PLoS One 14(9), 19 (2019) MathSciNet
31.
go back to reference Denkinger, C.M., Kik, S.V., Cirillo, D.M., et al.: Defining the needs for next-generation assays for tuberculosis. J. Infect. Dis. 211(Suppl 2), S29–S38 (2015) CrossRef Denkinger, C.M., Kik, S.V., Cirillo, D.M., et al.: Defining the needs for next-generation assays for tuberculosis. J. Infect. Dis. 211(Suppl 2), S29–S38 (2015) CrossRef
32.
go back to reference Muyoyeta, M., et al.: Implementation research to inform the use of Xpert MTB/RIF in primary health care facilities in high TB and HIV settings in resource constrained settings. PLoS One 10(6), e0126376 (2015). Epub 2015/06/02. pmid:26030301; PubMed Central PMCID: PMC4451006 Muyoyeta, M., et al.: Implementation research to inform the use of Xpert MTB/RIF in primary health care facilities in high TB and HIV settings in resource constrained settings. PLoS One 10(6), e0126376 (2015). Epub 2015/06/02. pmid:26030301; PubMed Central PMCID: PMC4451006
33.
go back to reference Whiting, P.F., et al.: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 155(8), 529–536 (2011) Whiting, P.F., et al.: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 155(8), 529–536 (2011)
Metadata
Title
Preliminary Results on Pulmonary Tuberculosis Detection in Chest X-Ray Using Convolutional Neural Networks
Authors
Márcio Eloi Colombo Filho
Rafael Mello Galliez
Filipe Andrade Bernardi
Lariza Laura de Oliveira
Afrânio Kritski
Marcel Koenigkam Santos
Domingos Alves
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_42