Skip to main content
Top
Published in:

04-07-2024

Premature Infant Cry Classification via Elephant Herding Optimized Convolutional Gated Recurrent Neural Network

Authors: V. Vaishnavi, M. Braveen, N. Muthukumaran, P. Poonkodi

Published in: Circuits, Systems, and Signal Processing | Issue 10/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Premature babies scream to make contact with their mothers or other people. Infants communicate via their screams in different ways based on the motivation behind their cries. A considerable amount of work and focus is required these days to preprocess, extract features, and classify audio signals. This research aims to propose a novel Elephant Herding Optimized Deep Convolutional Gated Recurrent Neural Network (EHO-DCGR net) for classifying cry signals from premature babies. Cry signals are first preprocessed to remove distortion caused by short sample times. MFCC (Mel-frequency cepstral coefficient), Power Normalized Cepstral Coefficients (PNCC), BFCC (Bark-frequency cepstral coefficient), and LPCC (Linear Prediction cepstral coefficient) are used to identify abnormal weeping through their prosodic aspects. The Elephant Herding optimization (EHO) algorithm is utilized for choosing the best features from the extracted set to form a fused feature matrix. These characteristics are then used to categorize premature baby cry sounds using the DCGR net. The proposed EHO-DCGR net effectiveness is measured by precision, specificity, recall, and F1-score, accuracy. According to experimental fallouts, the proposed EHO-DCGR net detects baby cry signals with an astounding 98.45% classification accuracy. From the experimental analysis, the EHO-DCGR Net increases the overall accuracy by 12.64%, 3.18%, 9.71% and 3.50% better than MFCC-SVM, DFFNN, SVM-RBF and SGDM respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Show more products
Literature
1.
go back to reference A. Abbaskhah, H. Sedighi, H. Marvi, Infant cry classification by MFCC feature extraction with MLP and CNN structures. Biomed. Signal Process. Control 86, 105261 (2023)CrossRef A. Abbaskhah, H. Sedighi, H. Marvi, Infant cry classification by MFCC feature extraction with MLP and CNN structures. Biomed. Signal Process. Control 86, 105261 (2023)CrossRef
2.
go back to reference A. Agasthian, P. Rajendra, L.A. Kumaraswamidhas, Integration of monitoring and security based deep learning network for wind turbine system. Int. J. Syst. Design Comput. 01(01), 11–17 (2023) A. Agasthian, P. Rajendra, L.A. Kumaraswamidhas, Integration of monitoring and security based deep learning network for wind turbine system. Int. J. Syst. Design Comput. 01(01), 11–17 (2023)
3.
go back to reference K. Anusha, B. Muthu Kumar, J. Ragaventhiran, India-Net: IOT intrusion detection via enhanced transient search optimized advanced deep learning technique. Int. J. Data Sci. Artif. Intell. IJDSAI 02(01), 07–12 (2024) K. Anusha, B. Muthu Kumar, J. Ragaventhiran, India-Net: IOT intrusion detection via enhanced transient search optimized advanced deep learning technique. Int. J. Data Sci. Artif. Intell. IJDSAI 02(01), 07–12 (2024)
4.
go back to reference A. Appathurai, R. Sundarasekar, C. Raja, E.J. Alex, C.A. Palagan, A. Nithya, An efficient optimal neural network-based moving vehicle detection in traffic video surveillance system. Circuits Syst. Signal Process. 39, 734–756 (2020)CrossRef A. Appathurai, R. Sundarasekar, C. Raja, E.J. Alex, C.A. Palagan, A. Nithya, An efficient optimal neural network-based moving vehicle detection in traffic video surveillance system. Circuits Syst. Signal Process. 39, 734–756 (2020)CrossRef
5.
go back to reference K. Ashwini, P.D.R. Vincent, A deep convolutional neural network-based approach for effective neonatal cry classification. Recent Adv. Comput. Sci. Commun. (Formerly: Recent Patents on Computer Science) 15(2), 229–239 (2022)CrossRef K. Ashwini, P.D.R. Vincent, A deep convolutional neural network-based approach for effective neonatal cry classification. Recent Adv. Comput. Sci. Commun. (Formerly: Recent Patents on Computer Science) 15(2), 229–239 (2022)CrossRef
6.
go back to reference Bano, S., RaviKumar, K.M.: Decoding baby talk: A novel approach for normal infant cry signal classification. In 2015 International Conference on Soft-Computing and Networks Security (ICSNS), 1–4 (2015). IEEE. Bano, S., RaviKumar, K.M.: Decoding baby talk: A novel approach for normal infant cry signal classification. In 2015 International Conference on Soft-Computing and Networks Security (ICSNS), 1–4 (2015). IEEE.
7.
go back to reference P. Banumathi, G.M. Nasira, B. Muthukumar, Artificial neural network technique, statistical and FFT in identifying defect in plain woven fabric. Entropy 8, 8 P. Banumathi, G.M. Nasira, B. Muthukumar, Artificial neural network technique, statistical and FFT in identifying defect in plain woven fabric. Entropy 8, 8
8.
go back to reference W. Boulila, A. Alzahem, A. Koubaa, B. Benjdira, A. Ammar, Early detection of red palm weevil infestations using deep learning classification of acoustic signals. Comput. Electron. Agric. 212, 108154 (2023)CrossRef W. Boulila, A. Alzahem, A. Koubaa, B. Benjdira, A. Ammar, Early detection of red palm weevil infestations using deep learning classification of acoustic signals. Comput. Electron. Agric. 212, 108154 (2023)CrossRef
9.
go back to reference C.Y. Chang, L.Y. Tsai. in Web, Artificial Intelligence and Network Applications: Proceedings of the Workshops of the 33rd International Conference on Advanced Information Networking and Applications (WAINA-2019), vol. 3, A CNN-based method for infant cry detection and recognition (2019), 786–792 C.Y. Chang, L.Y. Tsai. in Web, Artificial Intelligence and Network Applications: Proceedings of the Workshops of the 33rd International Conference on Advanced Information Networking and Applications (WAINA-2019), vol. 3, A CNN-based method for infant cry detection and recognition (2019), 786–792
10.
go back to reference S. Chauhan, M. Singh, A.K. Aggarwal, Bearing defect identification via evolutionary algorithm with adaptive wavelet mutation strategy. Meas. 179, 109445 (2021)CrossRef S. Chauhan, M. Singh, A.K. Aggarwal, Bearing defect identification via evolutionary algorithm with adaptive wavelet mutation strategy. Meas. 179, 109445 (2021)CrossRef
11.
go back to reference S. Chauhan, M. Singh, A.K. Aggarwal, Cluster head selection in heterogeneous wireless sensor network using a new evolutionary algorithm. Wireless Pers. Commun. 119, 585–616 (2021)CrossRef S. Chauhan, M. Singh, A.K. Aggarwal, Cluster head selection in heterogeneous wireless sensor network using a new evolutionary algorithm. Wireless Pers. Commun. 119, 585–616 (2021)CrossRef
12.
go back to reference R. Cohen, D. Ruinskiy, J. Zickfeld, H. IJzerman, Y. Lavner, Baby cry detection: deep learning and classical approaches. Develop. Anal. Deep Learn. Architect. 171–196 (2020). R. Cohen, D. Ruinskiy, J. Zickfeld, H. IJzerman, Y. Lavner, Baby cry detection: deep learning and classical approaches. Develop. Anal. Deep Learn. Architect. 171–196 (2020).
13.
go back to reference G. Coro, S. Bardelli, A. Cuttano, R.T. Scaramuzzo, M. Ciantelli, A self-training automatic infant-cry detector. Neural Comput. Appl. 35(11), 8543–8559 (2023)CrossRef G. Coro, S. Bardelli, A. Cuttano, R.T. Scaramuzzo, M. Ciantelli, A self-training automatic infant-cry detector. Neural Comput. Appl. 35(11), 8543–8559 (2023)CrossRef
14.
go back to reference S.P. Dewi, A.L. Prasasti, B. Irawan, The study of baby crying analysis using MFCC and LFCC in different classification methods. IEEE. 18–23 (2019) S.P. Dewi, A.L. Prasasti, B. Irawan, The study of baby crying analysis using MFCC and LFCC in different classification methods. IEEE. 18–23 (2019)
15.
go back to reference G.Z. Felipe, R.L. Aguiar, Y.M. Costa, C.N. Silla, S. Brahnam, L. Nanni, S. McMurtrey, , in 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), Identification of infants’ cry motivation using spectrograms (IEEE, 2019), pp. 181–186 G.Z. Felipe, R.L. Aguiar, Y.M. Costa, C.N. Silla, S. Brahnam, L. Nanni, S. McMurtrey, , in 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), Identification of infants’ cry motivation using spectrograms (IEEE, 2019), pp. 181–186
16.
go back to reference E. Fenil, G. Manogaran, G.N. Vivekananda, T. Thanjaivadivel, S. Jeeva, A. Ahilan, Real time violence detection framework for football stadium comprising of big data analysis and deep learning through bidirectional LSTM. Comput. Networks. 151, 191–200 (2019)CrossRef E. Fenil, G. Manogaran, G.N. Vivekananda, T. Thanjaivadivel, S. Jeeva, A. Ahilan, Real time violence detection framework for football stadium comprising of big data analysis and deep learning through bidirectional LSTM. Comput. Networks. 151, 191–200 (2019)CrossRef
17.
go back to reference R. Jahangir, CNN‐SCNet: A CNN net‐based deep learning framework for infant cry detection in household setting. Eng. Rep. e12786 (2023) R. Jahangir, CNN‐SCNet: A CNN net‐based deep learning framework for infant cry detection in household setting. Eng. Rep. e12786 (2023)
18.
go back to reference C. Ji, X. Xiao, S. Basodi, Y. Pan, in 2019 International conference on Internet of Things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData), IEEE Deep learning for asphyxiated infant cry classification based on acoustic features and weighted prosodic features (2019), pp. 1233–1240 C. Ji, X. Xiao, S. Basodi, Y. Pan, in 2019 International conference on Internet of Things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData), IEEE Deep learning for asphyxiated infant cry classification based on acoustic features and weighted prosodic features (2019), pp. 1233–1240
19.
go back to reference A. Kachhi, S. Chaturvedi, H.A. Patil, D.K. Singh, in 2022 13th International Symposium on Chinese Spoken Language Processing (ISCSLP), Data augmentation for infant cry classification (IEEE, 2022), pp. 433–437 A. Kachhi, S. Chaturvedi, H.A. Patil, D.K. Singh, in 2022 13th International Symposium on Chinese Spoken Language Processing (ISCSLP), Data augmentation for infant cry classification (IEEE, 2022), pp. 433–437
20.
go back to reference Z. Khalilzad, C. Tadj, Using CCA-fused cepstral features in a deep learning-based cry diagnostic system for detecting an ensemble of pathologies in newborns. Diagn. 13(5), 879 (2023)CrossRef Z. Khalilzad, C. Tadj, Using CCA-fused cepstral features in a deep learning-based cry diagnostic system for detecting an ensemble of pathologies in newborns. Diagn. 13(5), 879 (2023)CrossRef
21.
go back to reference Y. Kheddache, C. Tadj, Identification of diseases in newborns using advanced acoustic features of cry signals. Biomed. Signal Process. Control 50, 35–44 (2019)CrossRef Y. Kheddache, C. Tadj, Identification of diseases in newborns using advanced acoustic features of cry signals. Biomed. Signal Process. Control 50, 35–44 (2019)CrossRef
22.
go back to reference K.B. Shah, S. Visalakshi, R. Panigrahi, Seven class solid waste management-hybrid features based deep neural network. Int. J. Syst. Design Comput. 01(01), 1–10 (2023) K.B. Shah, S. Visalakshi, R. Panigrahi, Seven class solid waste management-hybrid features based deep neural network. Int. J. Syst. Design Comput. 01(01), 1–10 (2023)
23.
go back to reference Kristian, Y., Simogiarto, N., Sampurna, M.T.A., Hanindito, E., Visuddho, V.: Ensemble of multimodal deep learning autoencoder for infant cry and pain detection. F1000Research. 11, 359 (2023). Kristian, Y., Simogiarto, N., Sampurna, M.T.A., Hanindito, E., Visuddho, V.: Ensemble of multimodal deep learning autoencoder for infant cry and pain detection. F1000Research. 11, 359 (2023).
24.
go back to reference S. Lahmiri, C. Tadj, C. Gargour, S. Bekiros, Deep learning systems for automatic diagnosis of infant cry signals. Chaos Solitons Fractals 154, 111700 (2022)CrossRef S. Lahmiri, C. Tadj, C. Gargour, S. Bekiros, Deep learning systems for automatic diagnosis of infant cry signals. Chaos Solitons Fractals 154, 111700 (2022)CrossRef
25.
go back to reference L. Liu, Y. Li, K. Kuo, in 2018 International Conference on Information and Computer Technologies (ICICT), Infant cry signal detection, pattern extraction and recognition (IEEE, 2018), pp. 159–163 L. Liu, Y. Li, K. Kuo, in 2018 International Conference on Information and Computer Technologies (ICICT), Infant cry signal detection, pattern extraction and recognition (IEEE, 2018), pp. 159–163
26.
go back to reference F.S. Matikolaie, C. Tadj, Machine learning-based cry diagnostic system for identifying septic newborns. J. Voice (2022) F.S. Matikolaie, C. Tadj, Machine learning-based cry diagnostic system for identifying septic newborns. J. Voice (2022)
27.
go back to reference P. Naveen, P. Sivakumar, A deep convolution neural network for facial expression recognition. J. Curr. Sci. Technol. 11(3), 402–410 (2021) P. Naveen, P. Sivakumar, A deep convolution neural network for facial expression recognition. J. Curr. Sci. Technol. 11(3), 402–410 (2021)
28.
go back to reference T. Ozseven, Infant cry classification by using different deep neural network models and hand-crafted features. Biomed. Signal Process. Control 83, 104648 (2023)CrossRef T. Ozseven, Infant cry classification by using different deep neural network models and hand-crafted features. Biomed. Signal Process. Control 83, 104648 (2023)CrossRef
29.
go back to reference S. Ramasamy, A. Selvarajan, V. Kaliyaperumal, P. Aruchamy, A hybrid location-dependent ultra convolutional neural network-based vehicle number plate recognition approach for intelligent transportation systems. Concurr. Comput. Pract. Exper. 35(8), e7615 (2023)CrossRef S. Ramasamy, A. Selvarajan, V. Kaliyaperumal, P. Aruchamy, A hybrid location-dependent ultra convolutional neural network-based vehicle number plate recognition approach for intelligent transportation systems. Concurr. Comput. Pract. Exper. 35(8), e7615 (2023)CrossRef
30.
go back to reference A. Rosales-Pérez, C.A. Reyes-García, J.A. Gonzalez, O.F. Reyes-Galaviz, H.J. Escalante, S. Orlandi, Classifying infant cry patterns by the genetic selection of a fuzzy model. Biomed. Signal Process. Control 17, 38–46 (2015)CrossRef A. Rosales-Pérez, C.A. Reyes-García, J.A. Gonzalez, O.F. Reyes-Galaviz, H.J. Escalante, S. Orlandi, Classifying infant cry patterns by the genetic selection of a fuzzy model. Biomed. Signal Process. Control 17, 38–46 (2015)CrossRef
31.
go back to reference Y.D. Rosita, H. Junaedi, in 2016 2nd International Conference on Science and Technology Computer (ICST), Infant's cry sound classification using Mel-Frequency Cepstrum Coefficients feature extraction and Backpropagation Neural Network (IEEE, 2016), pp. 160–166 Y.D. Rosita, H. Junaedi, in 2016 2nd International Conference on Science and Technology Computer (ICST), Infant's cry sound classification using Mel-Frequency Cepstrum Coefficients feature extraction and Backpropagation Neural Network (IEEE, 2016), pp. 160–166
32.
go back to reference M. Severini, D. Ferretti, E. Principi, S. Squartini, Automatic detection of cry sounds in neonatal intensive care units by using deep learning and acoustic scene simulation. IEEE Access 7, 51982–51993 (2019)CrossRef M. Severini, D. Ferretti, E. Principi, S. Squartini, Automatic detection of cry sounds in neonatal intensive care units by using deep learning and acoustic scene simulation. IEEE Access 7, 51982–51993 (2019)CrossRef
33.
go back to reference R. Subha, A. Haldorai, A. Ramu, An optimal approach to enhance context aware description administration service for cloud robots in a deep learning environment. Wireless Pers. Commun. 117, 3343–3358 (2021)CrossRef R. Subha, A. Haldorai, A. Ramu, An optimal approach to enhance context aware description administration service for cloud robots in a deep learning environment. Wireless Pers. Commun. 117, 3343–3358 (2021)CrossRef
34.
go back to reference K. Sujatha, G. Nalinashini, A. Ganesan, A. Kalaivani, K. Sethil, R. Hari, F.A.X. Bronson, K. Bhaskar, in Implementation of Smart Healthcare Systems Using AI, IoT, and Blockchain, Internet of medical things for abnormality detection in infants using mobile phone app with cry signal analysis (2023), pp. 169–191 K. Sujatha, G. Nalinashini, A. Ganesan, A. Kalaivani, K. Sethil, R. Hari, F.A.X. Bronson, K. Bhaskar, in Implementation of Smart Healthcare Systems Using AI, IoT, and Blockchain, Internet of medical things for abnormality detection in infants using mobile phone app with cry signal analysis (2023), pp. 169–191
35.
go back to reference K. Teeravajanadet, N. Siwilai, K. Thanaselanggul, N. Ponsiricharoenphan, S. Tungjitkusolmun, P. Phasukkit, in 2019 12th Biomedical Engineering International Conference (BMEiCON) IEEE, An infant cry recognition based on convolutional neural network method (2019), pp. 1–4 K. Teeravajanadet, N. Siwilai, K. Thanaselanggul, N. Ponsiricharoenphan, S. Tungjitkusolmun, P. Phasukkit, in 2019 12th Biomedical Engineering International Conference (BMEiCON) IEEE, An infant cry recognition based on convolutional neural network method (2019), pp. 1–4
36.
go back to reference S. Upadhyay, R.B. Lincy, R.B. Jeyavathana, A. Gopatoti, In 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), IEEE 877–883 (2022). S. Upadhyay, R.B. Lincy, R.B. Jeyavathana, A. Gopatoti, In 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), IEEE 877–883 (2022).
37.
go back to reference V. Vaishnavi, P.S. Dhanaselvam, Premature infant cry signal prediction and classification via dense convolution neural network. J. Intell. Fuzzy Syst. 42, 1–14 (2022) V. Vaishnavi, P.S. Dhanaselvam, Premature infant cry signal prediction and classification via dense convolution neural network. J. Intell. Fuzzy Syst. 42, 1–14 (2022)
38.
go back to reference P.D.R. Vincent, K. Srinivasan, C.Y. Chang, Deep learning assisted premature infant cry classification via support vector machine models. Public Health Front. 9, 670352 (2021)CrossRef P.D.R. Vincent, K. Srinivasan, C.Y. Chang, Deep learning assisted premature infant cry classification via support vector machine models. Public Health Front. 9, 670352 (2021)CrossRef
39.
go back to reference S. Wang, J. Du, Y. Wang, in National Conference on Man-Machine Speech Communication, Baby cry recognition based on acoustic segment model (2023), pp. 16–29 S. Wang, J. Du, Y. Wang, in National Conference on Man-Machine Speech Communication, Baby cry recognition based on acoustic segment model (2023), pp. 16–29
40.
go back to reference Y. Zayed, A. Hasasneh, C. Tadj, Infant cry signal diagnostic system using deep learning and fused features. Diagnostics. 13(12), 2107 (2023)CrossRef Y. Zayed, A. Hasasneh, C. Tadj, Infant cry signal diagnostic system using deep learning and fused features. Diagnostics. 13(12), 2107 (2023)CrossRef
Metadata
Title
Premature Infant Cry Classification via Elephant Herding Optimized Convolutional Gated Recurrent Neural Network
Authors
V. Vaishnavi
M. Braveen
N. Muthukumaran
P. Poonkodi
Publication date
04-07-2024
Publisher
Springer US
Published in
Circuits, Systems, and Signal Processing / Issue 10/2024
Print ISSN: 0278-081X
Electronic ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02764-5