Skip to main content
Top
Published in: Journal of Materials Science 4/2017

13-10-2016 | Original Paper

Preparation and characterization of antibacterial graphene oxide functionalized with polymeric N-halamine

Authors: Nengyu Pan, Ying Liu, Xiaoyan Fan, Zhiming Jiang, Xuehong Ren, Jie Liang

Published in: Journal of Materials Science | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Organic–inorganic composites have also gained much attention owing to their excellent combined properties. For the enhancement of the bacteria-inactivation ability of graphene oxide (GO), poly[5,5-dimethyl-3-(3′-triethoxysilylpropyl)hydantoin] (PSPH) was synthesized and attached onto GO through covalent bond. The synthesized inorganic–organic composites (GO-PSPH) were characterized by FT-IR, XPS, XRD, AFM, SEM, etc. After chlorination treatment by sodium hypochlorite, biocidal efficacies of the chlorinated GO-PSPH (GO-PSPH-Cl) against S. aureus (ATCC 6538) and E. coli O157:H7 (ATCC 43895) were tested. The antibacterial testing results showed that the GO-PSPH-Cl has great antibacterial activity and could completely inactivate 5.5 × 106 CFU/mL of S. aureus and 1.2 × 108 CFU/mL of E. coli O157:H7 within 30 and 10 min of contact time, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980CrossRef Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980CrossRef
2.
3.
go back to reference Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
4.
go back to reference Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
5.
go back to reference Compton OC, Nguyen ST (2010) Graphene Oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723CrossRef Compton OC, Nguyen ST (2010) Graphene Oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723CrossRef
6.
go back to reference Zhang Z-B, Wu J-J, Su Y et al (2015) Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance. Appl Surf Sci 332:300–307CrossRef Zhang Z-B, Wu J-J, Su Y et al (2015) Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance. Appl Surf Sci 332:300–307CrossRef
7.
go back to reference Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323CrossRef Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323CrossRef
8.
go back to reference Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860CrossRef Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860CrossRef
9.
go back to reference Maria AB, Daniele DA, Silvia S et al (2016) Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity. Nanotechnology 27:245704CrossRef Maria AB, Daniele DA, Silvia S et al (2016) Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity. Nanotechnology 27:245704CrossRef
10.
go back to reference Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736CrossRef Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736CrossRef
11.
go back to reference Li P, Sun S, Dong A et al (2015) Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity. Appl Surf Sci 355:446–452CrossRef Li P, Sun S, Dong A et al (2015) Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity. Appl Surf Sci 355:446–452CrossRef
12.
go back to reference Hegab HM, ElMekawy A, Zou L, Mulcahy D, Saint CP, Ginic-Markovic M (2016) The controversial antibacterial activity of graphene-based materials. Carbon 105:362–376CrossRef Hegab HM, ElMekawy A, Zou L, Mulcahy D, Saint CP, Ginic-Markovic M (2016) The controversial antibacterial activity of graphene-based materials. Carbon 105:362–376CrossRef
13.
go back to reference Tu Y, Lv M, Xiu P et al (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601CrossRef Tu Y, Lv M, Xiu P et al (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601CrossRef
14.
go back to reference Combarros RG, Collado S, Díaz M (2016) Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida. J Hazard Mater 310:246–252CrossRef Combarros RG, Collado S, Díaz M (2016) Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida. J Hazard Mater 310:246–252CrossRef
15.
go back to reference Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471–5479CrossRef Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471–5479CrossRef
16.
go back to reference Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543CrossRef Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543CrossRef
17.
go back to reference Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138:2064–2077CrossRef Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138:2064–2077CrossRef
18.
go back to reference Zhang Y, Ali SF, Dervishi E et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–3186CrossRef Zhang Y, Ali SF, Dervishi E et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–3186CrossRef
19.
go back to reference Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889CrossRef Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889CrossRef
20.
go back to reference Liu L, Liu J, Wang Y, Yan X, Sun DD (2011) Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem 35:1418–1423CrossRef Liu L, Liu J, Wang Y, Yan X, Sun DD (2011) Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem 35:1418–1423CrossRef
21.
go back to reference Liu Y, Ma K, Li R, Ren X, Huang TS (2013) Antibacterial cotton treated with N-halamine and quaternary ammonium salt. Cellulose 20:3123–3130CrossRef Liu Y, Ma K, Li R, Ren X, Huang TS (2013) Antibacterial cotton treated with N-halamine and quaternary ammonium salt. Cellulose 20:3123–3130CrossRef
22.
go back to reference Waschinski CJ, Zimmermann J, Salz U, Hutzler R, Sadowski G, Tiller JC (2008) Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater 20:104–108CrossRef Waschinski CJ, Zimmermann J, Salz U, Hutzler R, Sadowski G, Tiller JC (2008) Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater 20:104–108CrossRef
23.
go back to reference Kenawy E-R, Abdel-Hay FI, El-Shanshoury AE-RR, El-Newehy MH (2002) Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts. J Polym Sci Part A 40:2384–2393CrossRef Kenawy E-R, Abdel-Hay FI, El-Shanshoury AE-RR, El-Newehy MH (2002) Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts. J Polym Sci Part A 40:2384–2393CrossRef
24.
go back to reference Li R, Hu P, Ren X, Worley SD, Huang TS (2013) Antimicrobial N-halamine modified chitosan films. Carbohydr Polym 92:534–539CrossRef Li R, Hu P, Ren X, Worley SD, Huang TS (2013) Antimicrobial N-halamine modified chitosan films. Carbohydr Polym 92:534–539CrossRef
25.
go back to reference Cheng X, Ma K, Li R, Ren X, Huang TS (2014) Antimicrobial coating of modified chitosan onto cotton fabrics. Appl Surf Sci 309:138–143CrossRef Cheng X, Ma K, Li R, Ren X, Huang TS (2014) Antimicrobial coating of modified chitosan onto cotton fabrics. Appl Surf Sci 309:138–143CrossRef
26.
go back to reference Ran X, Wang L, Cao D, Lin Y, Hao J (2011) Synthesis, characterization and in vitro biological activity of cobalt(II), copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and d, l-selenomethionine. Appl Organomet Chem 25:9–15CrossRef Ran X, Wang L, Cao D, Lin Y, Hao J (2011) Synthesis, characterization and in vitro biological activity of cobalt(II), copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and d, l-selenomethionine. Appl Organomet Chem 25:9–15CrossRef
27.
go back to reference Bromberg L, Chang EP, Hatton TA, Concheiro A, Magariños B, Alvarez-Lorenzo C (2011) Bactericidal core-shell paramagnetic nanoparticles functionalized with poly(hexamethylene biguanide). Langmuir 27:420–429CrossRef Bromberg L, Chang EP, Hatton TA, Concheiro A, Magariños B, Alvarez-Lorenzo C (2011) Bactericidal core-shell paramagnetic nanoparticles functionalized with poly(hexamethylene biguanide). Langmuir 27:420–429CrossRef
28.
go back to reference Khan SA, Singh AK, Senapati D, Fan Z, Ray PC (2011) Bio-conjugated popcorn shaped gold nanoparticles for targeted photothermal killing of multiple drug resistant Salmonella DT104. J Mater Chem 21:17705–17709CrossRef Khan SA, Singh AK, Senapati D, Fan Z, Ray PC (2011) Bio-conjugated popcorn shaped gold nanoparticles for targeted photothermal killing of multiple drug resistant Salmonella DT104. J Mater Chem 21:17705–17709CrossRef
29.
go back to reference Wang S, Singh AK, Senapati D, Neely A, Yu H, Ray PC (2010) Rapid colorimetric identification and targeted photothermal lysis of salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chem Eur J 16:5600–5606CrossRef Wang S, Singh AK, Senapati D, Neely A, Yu H, Ray PC (2010) Rapid colorimetric identification and targeted photothermal lysis of salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chem Eur J 16:5600–5606CrossRef
30.
go back to reference Ren X, Kou L, Liang J, Worley SD, Tzou Y-M, Huang TS (2008) Antimicrobial efficacy and light stability of N-halamine siloxanes bound to cotton. Cellulose 15:593–598CrossRef Ren X, Kou L, Liang J, Worley SD, Tzou Y-M, Huang TS (2008) Antimicrobial efficacy and light stability of N-halamine siloxanes bound to cotton. Cellulose 15:593–598CrossRef
31.
go back to reference Ren X, Kou L, Kocer HB et al (2009) Antimicrobial modification of polyester by admicellar polymerization. J Biomed Mater Res Part B 89B:475–480CrossRef Ren X, Kou L, Kocer HB et al (2009) Antimicrobial modification of polyester by admicellar polymerization. J Biomed Mater Res Part B 89B:475–480CrossRef
32.
go back to reference Xuehong REN, Changyun ZHU, Lei KOU et al (2010) Acyclic N-halamine polymeric biocidal films. J Bioact Compat Polym 25:392–405CrossRef Xuehong REN, Changyun ZHU, Lei KOU et al (2010) Acyclic N-halamine polymeric biocidal films. J Bioact Compat Polym 25:392–405CrossRef
33.
go back to reference Ren X, Kou L, Kocer HB et al (2008) Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids Surf A 317:711–716CrossRef Ren X, Kou L, Kocer HB et al (2008) Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids Surf A 317:711–716CrossRef
34.
go back to reference Chen Z, Sun Y (2006) N-Halamine-based antimicrobial additives for polymers: preparation, characterization, and antimicrobial activity. Ind Eng Chem Res 45:2634–2640CrossRef Chen Z, Sun Y (2006) N-Halamine-based antimicrobial additives for polymers: preparation, characterization, and antimicrobial activity. Ind Eng Chem Res 45:2634–2640CrossRef
35.
go back to reference Li J, Liu Y, Jiang Z, Ma K, Ren X, Huang T-s (2014) Antimicrobial cellulose modified with nanotitania and cyclic N-halamine. Ind Eng Chem Res 53:13058–13064CrossRef Li J, Liu Y, Jiang Z, Ma K, Ren X, Huang T-s (2014) Antimicrobial cellulose modified with nanotitania and cyclic N-halamine. Ind Eng Chem Res 53:13058–13064CrossRef
36.
go back to reference Tu Q, Tian C, Ma T, Pang L, Wang J (2016) Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability. Colloids Surf B 141:196–205CrossRef Tu Q, Tian C, Ma T, Pang L, Wang J (2016) Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability. Colloids Surf B 141:196–205CrossRef
37.
go back to reference Lim HN, Huang NM, Loo CH (2012) Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties. J Non-Cryst Solids 358:525–530CrossRef Lim HN, Huang NM, Loo CH (2012) Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties. J Non-Cryst Solids 358:525–530CrossRef
38.
go back to reference Worley SD, Chen Y, Wang JW et al (2005) Novel N-halamine siloxane monomers and polymers for preparing biocidal coatings. Surf Coat Int Part B 88:93–99CrossRef Worley SD, Chen Y, Wang JW et al (2005) Novel N-halamine siloxane monomers and polymers for preparing biocidal coatings. Surf Coat Int Part B 88:93–99CrossRef
39.
go back to reference Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339CrossRef
40.
go back to reference Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef
41.
go back to reference Kim T, Lee H, Kim J, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612–1618CrossRef Kim T, Lee H, Kim J, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612–1618CrossRef
42.
go back to reference Hu Y, Song S, Lopez-Valdivieso A (2015) Effects of oxidation on the defect of reduced graphene oxides in graphene preparation. J Colloid Interface Sci 450:68–73CrossRef Hu Y, Song S, Lopez-Valdivieso A (2015) Effects of oxidation on the defect of reduced graphene oxides in graphene preparation. J Colloid Interface Sci 450:68–73CrossRef
43.
go back to reference Yang Y, Liu T (2011) Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid. Appl Surf Sci 257:8950–8954CrossRef Yang Y, Liu T (2011) Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid. Appl Surf Sci 257:8950–8954CrossRef
44.
go back to reference Schniepp HC, Li J-L, McAllister MJ et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef Schniepp HC, Li J-L, McAllister MJ et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef
45.
go back to reference Li J, Liu C-y, Cheng C (2011) Electrochemical detection of hydroquinone by graphene and Pt-graphene hybrid material synthesized through a microwave-assisted chemical reduction process. Electrochim Acta 56:2712–2716CrossRef Li J, Liu C-y, Cheng C (2011) Electrochemical detection of hydroquinone by graphene and Pt-graphene hybrid material synthesized through a microwave-assisted chemical reduction process. Electrochim Acta 56:2712–2716CrossRef
46.
go back to reference Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
47.
go back to reference Chen D, Wang D, Ge Q et al (2015) Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films 574:1–9CrossRef Chen D, Wang D, Ge Q et al (2015) Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films 574:1–9CrossRef
48.
go back to reference Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116:17280–17287CrossRef Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116:17280–17287CrossRef
49.
go back to reference Tang J, Chen Q, Xu L et al (2013) Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5:3867–3874CrossRef Tang J, Chen Q, Xu L et al (2013) Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5:3867–3874CrossRef
50.
go back to reference Yang X, Li Z, Ju E, Ren J, Qu X (2014) Reduced graphene oxide functionalized with a luminescent rare-earth complex for the tracking and photothermal killing of drug-resistant bacteria. Chem Eur J 20:394–398CrossRef Yang X, Li Z, Ju E, Ren J, Qu X (2014) Reduced graphene oxide functionalized with a luminescent rare-earth complex for the tracking and photothermal killing of drug-resistant bacteria. Chem Eur J 20:394–398CrossRef
51.
go back to reference Zhang W, Shi S, Wang Y et al (2016) Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale 8:11642–11648CrossRef Zhang W, Shi S, Wang Y et al (2016) Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale 8:11642–11648CrossRef
52.
go back to reference Chen Z, Luo J, Sun Y (2007) Biocidal efficacy, biofilm-controlling function, and controlled release effect of chloromelamine-based bioresponsive fibrous materials. Biomaterials 28:1597–1609CrossRef Chen Z, Luo J, Sun Y (2007) Biocidal efficacy, biofilm-controlling function, and controlled release effect of chloromelamine-based bioresponsive fibrous materials. Biomaterials 28:1597–1609CrossRef
Metadata
Title
Preparation and characterization of antibacterial graphene oxide functionalized with polymeric N-halamine
Authors
Nengyu Pan
Ying Liu
Xiaoyan Fan
Zhiming Jiang
Xuehong Ren
Jie Liang
Publication date
13-10-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0488-1

Other articles of this Issue 4/2017

Journal of Materials Science 4/2017 Go to the issue

Premium Partners