Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 5-8/2019

06-05-2019 | ORIGINAL ARTICLE

Preparation and mechanical properties of closed-cell CNTs-reinforced Al composite foams by friction stir welding

Authors: Q. Pang, Z. L. Hu, J. S. Song

Published in: The International Journal of Advanced Manufacturing Technology | Issue 5-8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Closed-cell carbon nanotubes (CNTs)-reinforced Al composite foams were successfully fabricated by the combination of friction stir welding and heat treatment. The microstructure and elemental composition of the CNTs/Al composite foams were analyzed by scanning electron microscopy and energy dispersive analysis (SEM/EDS). Simultaneously, the mechanical properties of the CNTs/Al composite foams were investigated by the quasi-static compression test. The results show that when the rotation speed is 1000 rpm matching with the welding speed of 300 mm/min, the surface morphology of the precursor is smooth and dense. TiH2 and CNTs can be mixed evenly in the aluminum matrix by the strong stirring of the stirring needle. The pore size and pore morphology of the CNTs/Al composite foams are highly sensitive to change in holding time. The precursor of composite foam occurs with sufficient expansion with highly spherical pores at 680 °C for 15 min. Simultaneously, due to the intense stirring of the pin tool, most CNTs are embedded in the Al foam matrix, and some entangled CNTs have become flat while maintaining the structural integrity. In the stress-strain curves, CNTs/Al composite foams have higher yield stress and wider plateau region than pure Al foam. Both compressive property and energy absorption capacity of CNTs/Al composite foams have a tendency to increase with decreasing porosity and increasing the strain rate. The peak stresses of CNTs/Al composite foams are in the range of 8.5–10.3 MPa at the strain rate of 0.01 mm/s, which are 3–4 times higher than that of pure Al foam.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Oxford Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Oxford
2.
go back to reference Matsumoto R, Mori S, Otsu M, Utsunomiya H (2018) Formation of skin surface layer on aluminum foam by friction stir powder incremental forming. Int J Adv Manuf Technol 99:1853–1861CrossRef Matsumoto R, Mori S, Otsu M, Utsunomiya H (2018) Formation of skin surface layer on aluminum foam by friction stir powder incremental forming. Int J Adv Manuf Technol 99:1853–1861CrossRef
3.
go back to reference Roohi AH, Naeini HM, Gollo MH, Soltanpour M, Bruschi S, Ghiotti A (2018) Forming of closed-cell aluminum foams under thermal loadings: experimental investigation. Int J Adv Manuf Technol 95:3919–3928CrossRef Roohi AH, Naeini HM, Gollo MH, Soltanpour M, Bruschi S, Ghiotti A (2018) Forming of closed-cell aluminum foams under thermal loadings: experimental investigation. Int J Adv Manuf Technol 95:3919–3928CrossRef
4.
go back to reference Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632CrossRef Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632CrossRef
5.
go back to reference Zhang M, Chen CJ, Huang Y, Zou T (2018) Bending processing and mechanism of laser forming pure aluminum metal foam. Int J Adv Manuf Technol 94:1849–1856CrossRef Zhang M, Chen CJ, Huang Y, Zou T (2018) Bending processing and mechanism of laser forming pure aluminum metal foam. Int J Adv Manuf Technol 94:1849–1856CrossRef
6.
go back to reference Palmer RA, Gao K, Doan TM, Green L, Cavallaro G (2007) Pressure infiltrated syntactic foams-process development and mechanical properties. Mater Sci Eng A 46:485–492 Palmer RA, Gao K, Doan TM, Green L, Cavallaro G (2007) Pressure infiltrated syntactic foams-process development and mechanical properties. Mater Sci Eng A 46:485–492
7.
go back to reference Zhang BY, Lin YF, Li S, Zhai DX, Wu GH (2016) Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Compos Part B: Eng 98:288–296CrossRef Zhang BY, Lin YF, Li S, Zhai DX, Wu GH (2016) Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Compos Part B: Eng 98:288–296CrossRef
8.
go back to reference Omar MY, Xiang C, Gupta N, Strbik OM III, Cho K (2015) Syntactic foam core metal matrix sandwich composite: compressive properties and strain rate effects. Mater Sci Eng A 643:156–168CrossRef Omar MY, Xiang C, Gupta N, Strbik OM III, Cho K (2015) Syntactic foam core metal matrix sandwich composite: compressive properties and strain rate effects. Mater Sci Eng A 643:156–168CrossRef
9.
go back to reference Nowacki J, Moraniec K (2015) Evaluation of methods of soldering AlSi and AlSi-SiC particle composite Al foams. J Mater Eng Perform 24:426–433CrossRef Nowacki J, Moraniec K (2015) Evaluation of methods of soldering AlSi and AlSi-SiC particle composite Al foams. J Mater Eng Perform 24:426–433CrossRef
10.
go back to reference Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scrip Mater 58:906–909CrossRef Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scrip Mater 58:906–909CrossRef
11.
go back to reference Morovvati MR, Mollaei-Dariani B (2018) The formability investigation of CNT-reinforced aluminum nano-composite sheets manufactured by accumulative roll bonding. Int J Adv Manuf Technol 95:3523–3533CrossRef Morovvati MR, Mollaei-Dariani B (2018) The formability investigation of CNT-reinforced aluminum nano-composite sheets manufactured by accumulative roll bonding. Int J Adv Manuf Technol 95:3523–3533CrossRef
12.
go back to reference Zou N, Li QZ (2016) Compressive mechanical property of porous magnesium composites reinforced by carbon nanotubes. J Mater Sci 51:5232–5239CrossRef Zou N, Li QZ (2016) Compressive mechanical property of porous magnesium composites reinforced by carbon nanotubes. J Mater Sci 51:5232–5239CrossRef
13.
go back to reference Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241CrossRef Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241CrossRef
14.
go back to reference Wu JH, Zhang HL, Zhang Y, Wang XT (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344–348CrossRef Wu JH, Zhang HL, Zhang Y, Wang XT (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344–348CrossRef
15.
go back to reference Liu ZY, Zhao K, Xiao BL, Wang WG, Ma ZY (2016) Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing. Mater Des 97:424–430CrossRef Liu ZY, Zhao K, Xiao BL, Wang WG, Ma ZY (2016) Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing. Mater Des 97:424–430CrossRef
16.
go back to reference Mashinini PM, Dinaharan I, Selvam JDR, Hattingh DG (2018) Microstructure evolution and mechanical characterization of friction stir welded titanium alloy Ti-6Al-4V using lanthanated tungsten tool. Mater Charact 139:328–336CrossRef Mashinini PM, Dinaharan I, Selvam JDR, Hattingh DG (2018) Microstructure evolution and mechanical characterization of friction stir welded titanium alloy Ti-6Al-4V using lanthanated tungsten tool. Mater Charact 139:328–336CrossRef
17.
go back to reference Papantoniou IG, Kyriakopoulou HP, Pantelis DI, Manolakos DE (2018) Fabrication of MWCNT-reinforced Al composite local foams using friction stir processing route. Int J Adv Manuf Technol 97:675–686CrossRef Papantoniou IG, Kyriakopoulou HP, Pantelis DI, Manolakos DE (2018) Fabrication of MWCNT-reinforced Al composite local foams using friction stir processing route. Int J Adv Manuf Technol 97:675–686CrossRef
18.
go back to reference Hangai Y, Kamada H, Utsunomiya T, Kitahara S, Kuwazuru O, Yoshikawa N (2014) Tensile properties and fracture behavior of aluminum alloy foam fabricated from die castings without using blowing agent by friction stir processing route. Materials 7:2382–2394CrossRef Hangai Y, Kamada H, Utsunomiya T, Kitahara S, Kuwazuru O, Yoshikawa N (2014) Tensile properties and fracture behavior of aluminum alloy foam fabricated from die castings without using blowing agent by friction stir processing route. Materials 7:2382–2394CrossRef
19.
go back to reference Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78CrossRef Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78CrossRef
20.
go back to reference Hangai Y, Yoshida H, Kuwazuru O, Yoshikawa N (2013) Effect of die material on compressive properties of open-cell porous aluminum fabricated by friction powder compaction process. Mater Trans 54:1057–1059CrossRef Hangai Y, Yoshida H, Kuwazuru O, Yoshikawa N (2013) Effect of die material on compressive properties of open-cell porous aluminum fabricated by friction powder compaction process. Mater Trans 54:1057–1059CrossRef
21.
go back to reference Yang KM, Yang XD, Liu EZ, Shi CS, Ma LY, He CN, Li QY, Li JJ, Zhao NQ (2017) Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams. Mater Sci Eng A 690:294–302CrossRef Yang KM, Yang XD, Liu EZ, Shi CS, Ma LY, He CN, Li QY, Li JJ, Zhao NQ (2017) Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams. Mater Sci Eng A 690:294–302CrossRef
22.
go back to reference Hangai Y, Kamada H, Utsunomiya T, Kitahara S, Kuwazuru O, Yoshikawa N (2014) Aluminum alloy foam core sandwich panels fabricated from die casting aluminum alloy by friction stir welding route. J Mater Process Tech 214:1928–1934CrossRef Hangai Y, Kamada H, Utsunomiya T, Kitahara S, Kuwazuru O, Yoshikawa N (2014) Aluminum alloy foam core sandwich panels fabricated from die casting aluminum alloy by friction stir welding route. J Mater Process Tech 214:1928–1934CrossRef
23.
go back to reference Ci LJ, Ryu ZY, Jin Phillipp NY, Ruhle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54:5367–5375CrossRef Ci LJ, Ryu ZY, Jin Phillipp NY, Ruhle M (2006) Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater 54:5367–5375CrossRef
24.
go back to reference Orbulov IN, Németh Á (2010) Infiltration characteristics of carbon fiber reinforced MMCs. Mater Sci Forum 659:229–234CrossRef Orbulov IN, Németh Á (2010) Infiltration characteristics of carbon fiber reinforced MMCs. Mater Sci Forum 659:229–234CrossRef
25.
go back to reference Liu JA, Yu SR, Zhu XY, Wei M, Luo YR, Liu YH (2008) The compressive properties of closed-cell Zn-22Al foam. Mater Lett 62:683–685CrossRef Liu JA, Yu SR, Zhu XY, Wei M, Luo YR, Liu YH (2008) The compressive properties of closed-cell Zn-22Al foam. Mater Lett 62:683–685CrossRef
26.
go back to reference Ruan D, Lu G, Chen FL, Siores E (2002) Compressive behaviour of aluminium foams at low and medium strain rates. Compos Struct 57:331–336CrossRef Ruan D, Lu G, Chen FL, Siores E (2002) Compressive behaviour of aluminium foams at low and medium strain rates. Compos Struct 57:331–336CrossRef
27.
go back to reference Liu HM, Pan WC, Si FJ, Huang K, Liu Y, Liu JA (2018) Enhanced compressive property of Al composite foams at elevated temperatures via plasma electrolytic oxidation. Metals 8:1–12 Liu HM, Pan WC, Si FJ, Huang K, Liu Y, Liu JA (2018) Enhanced compressive property of Al composite foams at elevated temperatures via plasma electrolytic oxidation. Metals 8:1–12
28.
go back to reference Zhang Z, , Ding J, Xia XC, Sun XH, Song KH, Zhao WM, Liao B (2015) Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes. Mater Des 88: 359–365CrossRef Zhang Z, , Ding J, Xia XC, Sun XH, Song KH, Zhao WM, Liao B (2015) Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes. Mater Des 88: 359–365CrossRef
29.
go back to reference Sun Y, Li QM, Lowe T, McDonald SA, Withers PJ (2016) Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling. Mater Des 89:215–224CrossRef Sun Y, Li QM, Lowe T, McDonald SA, Withers PJ (2016) Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling. Mater Des 89:215–224CrossRef
30.
go back to reference Wang NZ, Maire E, Chen X, Jérôme A, Li YX, Yasin A, Hu L, Cheng Y (2019) Compressive performance and deformation mechanism of the dynamic gas injection aluminum foams. Mater Charact 147:11–20CrossRef Wang NZ, Maire E, Chen X, Jérôme A, Li YX, Yasin A, Hu L, Cheng Y (2019) Compressive performance and deformation mechanism of the dynamic gas injection aluminum foams. Mater Charact 147:11–20CrossRef
31.
go back to reference Madhu HC, Kailas SV (2018) Fabrication of localised aluminium foam by a novel polymeric blowing agent. Mater Charact 142:340–351CrossRef Madhu HC, Kailas SV (2018) Fabrication of localised aluminium foam by a novel polymeric blowing agent. Mater Charact 142:340–351CrossRef
32.
go back to reference Paggi RA, Beal VE, Salmoria GV (2013) Process optimization for PA12/MWCNT nanocomposite manufacturing by selective laser sintering. Int J Adv Manuf Technol 66:1977–1985CrossRef Paggi RA, Beal VE, Salmoria GV (2013) Process optimization for PA12/MWCNT nanocomposite manufacturing by selective laser sintering. Int J Adv Manuf Technol 66:1977–1985CrossRef
Metadata
Title
Preparation and mechanical properties of closed-cell CNTs-reinforced Al composite foams by friction stir welding
Authors
Q. Pang
Z. L. Hu
J. S. Song
Publication date
06-05-2019
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 5-8/2019
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-03765-4

Other articles of this Issue 5-8/2019

The International Journal of Advanced Manufacturing Technology 5-8/2019 Go to the issue

Premium Partners