Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2022

03-01-2022 | Technical Article

Preparation and Thermoelectric Properties of Type-VIII Single-Crystalline SmxBa8−xGa16Sn30 Clathrate

Authors: Lanxian Shen, Kaiyuan Shen, Wen Ge, Jie Zheng, Baihua He, Shukang Deng

Published in: Journal of Materials Engineering and Performance | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, based on the stoichiometric ratio of Sm: Ba: Ga: Sn = x: 8 − x: 16: 50 (x = 0, 0.25, 0.5, 0.75, 1, 1.5, 2), Sm-doped type-VIII single-crystalline clathrate SmxBa8−xGa16Sn30 thermoelectric material was successfully prepared via Sn-flux method. The electrical properties were investigated by the measurement of conductivity, Seebeck coefficient and Hall coefficient. The results show that the solubility of Sm in type-VIII Ba8Ga16Sn30 is very low, and the lattice constant of the samples containing Sm decreases compared with type-VIII Ba8Ga16Sn30. However, for all samples containing Sm, the lattice constant increases with the increase of the initial content of Sm. Sm plays a "modulation" framework atoms ratio role in the cage compound. Moreover, the carrier mobility of the sample is greatly improved by Sm doping. The related electrical properties exhibit irregular changes with the increase of the initial content of Sm. The sample with x = 0.75 consistently shows high Seebeck coefficient and conductivity in the 300-600 K test temperature range. The maximum power factor is 2.25 × 10−3 W/mK2 near 442 K, indicating that the energy band structure is optimized, while the conductivity is improved. The ZT value is estimated to be 1.31 at 457 K.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Saramat, G. Svenson, A. Palmqvist, C. Stiewe and D.M. Rowe, Large Thermoelectric Figure of Merit at High Temperature in Czochralski-Grown Clathrate Ba8Ga16Ge30, J. Appl. Phys., 2006, 99(2), p 1325–2284.CrossRef A. Saramat, G. Svenson, A. Palmqvist, C. Stiewe and D.M. Rowe, Large Thermoelectric Figure of Merit at High Temperature in Czochralski-Grown Clathrate Ba8Ga16Ge30, J. Appl. Phys., 2006, 99(2), p 1325–2284.CrossRef
2.
go back to reference P.F. Qiu, R.H. Liu, J. Yang, X. Shi, X.Y. Huang, W. Zhang, L.D. Chen, J. Yang and D.J. Singh, Thermoelectric Properties of Ni-Doped CeFe4Sb12 Skutterudites, J. Appl. Phys., 2012, 111(2), p 00561.CrossRef P.F. Qiu, R.H. Liu, J. Yang, X. Shi, X.Y. Huang, W. Zhang, L.D. Chen, J. Yang and D.J. Singh, Thermoelectric Properties of Ni-Doped CeFe4Sb12 Skutterudites, J. Appl. Phys., 2012, 111(2), p 00561.CrossRef
3.
go back to reference L. Han, X. Tang, Q. Zhang and C. Uher, High Performance InxCeyCo4Sb12 Thermoelectric Materials with in Situ Forming Nanostructured InSb Phase, Appl. Phys. Lett., 2009, 94(10), p 407–253.CrossRef L. Han, X. Tang, Q. Zhang and C. Uher, High Performance InxCeyCo4Sb12 Thermoelectric Materials with in Situ Forming Nanostructured InSb Phase, Appl. Phys. Lett., 2009, 94(10), p 407–253.CrossRef
4.
go back to reference S. Mano, T. Onimaru, S. Yamanaka and T. Takabatake, Off-Center Rattling and Thermoelectric Properties of Type-II Clathrate (K, Ba)24(Ga, Sn, □)136 Single Crystals, Phys. Rev. B Condens. Matter, 2011, 84(21), p 214101.CrossRef S. Mano, T. Onimaru, S. Yamanaka and T. Takabatake, Off-Center Rattling and Thermoelectric Properties of Type-II Clathrate (K, Ba)24(Ga, Sn, □)136 Single Crystals, Phys. Rev. B Condens. Matter, 2011, 84(21), p 214101.CrossRef
5.
go back to reference I. Ishii, K. Suekuni, T. Takabatake, T. Suzuki and M.A. Avila, Lattice Instability and Elastic Dispersion Due to the Rattling Motion in the Type-I Clathrate Ba8Ga16Sn30, Phys. Rev. B Condens. Matter, 2012, 85(8), p 652–660.CrossRef I. Ishii, K. Suekuni, T. Takabatake, T. Suzuki and M.A. Avila, Lattice Instability and Elastic Dispersion Due to the Rattling Motion in the Type-I Clathrate Ba8Ga16Sn30, Phys. Rev. B Condens. Matter, 2012, 85(8), p 652–660.CrossRef
6.
go back to reference X. Zhu, C. Ning, L. Liu and L. Yang, Study on Rare-Earth–Doped Type-I Germanium Clathrates, J. Appl. Phys., 2012, 111(7pt.3), p 105. X. Zhu, C. Ning, L. Liu and L. Yang, Study on Rare-Earth–Doped Type-I Germanium Clathrates, J. Appl. Phys., 2012, 111(7pt.3), p 105.
7.
go back to reference B. Du, Y. Saiga, K. Kajisa and T. Takabatake, Thermoelectric Performance of Zn-Substituted Type-VIII Clathrate Ba8Ga16Sn30 Single Crystals, J. Appl. Phys., 2012, 111(1), p 19.CrossRef B. Du, Y. Saiga, K. Kajisa and T. Takabatake, Thermoelectric Performance of Zn-Substituted Type-VIII Clathrate Ba8Ga16Sn30 Single Crystals, J. Appl. Phys., 2012, 111(1), p 19.CrossRef
8.
go back to reference J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf and G.A. Slack, Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors, Phys. Rev. Lett., 1998, 82(4), p 779–782.CrossRef J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf and G.A. Slack, Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors, Phys. Rev. Lett., 1998, 82(4), p 779–782.CrossRef
9.
go back to reference G.S. Nolas, J.L. Cohn, G.A. Slack and S.B. Schujman, Semiconducting Ge Clathrates: Promising Candidates for Thermoelectric Applications, Appl. Phys. Lett., 1998, 73(2), p 178–180.CrossRef G.S. Nolas, J.L. Cohn, G.A. Slack and S.B. Schujman, Semiconducting Ge Clathrates: Promising Candidates for Thermoelectric Applications, Appl. Phys. Lett., 1998, 73(2), p 178–180.CrossRef
10.
go back to reference J.H. Kim, N.L. Okamoto, K. Kishida, K. Tanaka and H. Inui, Thermoelectric Properties of Ba-Ge Based Type-III Clathrate Compounds, Mrs Proceed., 2006, 980, p 0980-II04-05.CrossRef J.H. Kim, N.L. Okamoto, K. Kishida, K. Tanaka and H. Inui, Thermoelectric Properties of Ba-Ge Based Type-III Clathrate Compounds, Mrs Proceed., 2006, 980, p 0980-II04-05.CrossRef
11.
go back to reference D. Cederkrantz, A. Saramat, G.J. Snyder and A. Palmqvist, Thermal Stability and Thermoelectric Properties of P-Type Ba8Ga16Ge30 Clathrates, J. Appl. Phys., 2009, 106(7), p 178–126.CrossRef D. Cederkrantz, A. Saramat, G.J. Snyder and A. Palmqvist, Thermal Stability and Thermoelectric Properties of P-Type Ba8Ga16Ge30 Clathrates, J. Appl. Phys., 2009, 106(7), p 178–126.CrossRef
12.
go back to reference K. Suekuni, M.A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa and T. Takabatake, Simultaneous Structure and Carrier Tuning of Dimorphic Clathrate Ba8Ga16Sn30, Phys. Rev. B, 2008, 77, p 235119.CrossRef K. Suekuni, M.A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa and T. Takabatake, Simultaneous Structure and Carrier Tuning of Dimorphic Clathrate Ba8Ga16Sn30, Phys. Rev. B, 2008, 77, p 235119.CrossRef
13.
go back to reference Y. Saiga, K. Suekuni, S.K. Deng, T. Yamamoto, Y. Kono, N. Ohya and T. Takabatake, Optimization of Thermoelectric Properties of Type-VIII Clathrate Ba8Ga16Sn30 by Carrier Tuning, J. Alloys Compd., 2010, 507(1), p 1–5.CrossRef Y. Saiga, K. Suekuni, S.K. Deng, T. Yamamoto, Y. Kono, N. Ohya and T. Takabatake, Optimization of Thermoelectric Properties of Type-VIII Clathrate Ba8Ga16Sn30 by Carrier Tuning, J. Alloys Compd., 2010, 507(1), p 1–5.CrossRef
14.
go back to reference B. Du, Y. Saiga, K. Kajisa and T. Takabatake, Thermoelectric Properties of P-Type Clathrate Ba8.0Ga15.9ZnySn30.1 Single Crystals with Various Carrier Concentrations, Chem. Mater., 2015, 27(5), p 150219132533006. B. Du, Y. Saiga, K. Kajisa and T. Takabatake, Thermoelectric Properties of P-Type Clathrate Ba8.0Ga15.9ZnySn30.1 Single Crystals with Various Carrier Concentrations, Chem. Mater., 2015, 27(5), p 150219132533006.
15.
go back to reference S. Deng, Y. Saiga, K. Suekuni and T. Takabatake, Enhancement of Thermoelectric Efficiency in Type-VIII Clathrate Ba8Ga16Sn30 by Al Substitution for Ga, J. Appl. Phys., 2010, 108(7), p 178. S. Deng, Y. Saiga, K. Suekuni and T. Takabatake, Enhancement of Thermoelectric Efficiency in Type-VIII Clathrate Ba8Ga16Sn30 by Al Substitution for Ga, J. Appl. Phys., 2010, 108(7), p 178.
16.
go back to reference S. De Ng, Y. Saiga, K. Kajisa and T. Takabatake, High Thermoelectric Performance of Cu Substituted Type-VIII Clathrate Ba8Ga16−xCuxSn30 Single Crystals, J. Appl. Phys., 2011, 109(10), p 105. S. De Ng, Y. Saiga, K. Kajisa and T. Takabatake, High Thermoelectric Performance of Cu Substituted Type-VIII Clathrate Ba8Ga16xCuxSn30 Single Crystals, J. Appl. Phys., 2011, 109(10), p 105.
17.
go back to reference Y.-X. Chen, B.-L. Du, Y. Saiga, K. Kajisa and T. Takabatake, Crystal Growth and Thermoelectric Properties of Type-VIII Clathrate Ba8Ga15.9Sn30.1xGex with p-Type Charge Carriers, J. Phys. D Appl. Phys., 2013, 46(20), p 205302.CrossRef Y.-X. Chen, B.-L. Du, Y. Saiga, K. Kajisa and T. Takabatake, Crystal Growth and Thermoelectric Properties of Type-VIII Clathrate Ba8Ga15.9Sn30.1xGex with p-Type Charge Carriers, J. Phys. D Appl. Phys., 2013, 46(20), p 205302.CrossRef
18.
go back to reference Y. Kono, N. Ohya, Y. Saiga, K. Suekuni, T. Takabatake, K. Akai and S. Yamamoto, Carrier Doping in the TypeVIII Clathrate Ba 8 Ga 16 Sn 30 Through Sb Substitution, J. Electron. Mater., 2011, 40(5), p 845–850.CrossRef Y. Kono, N. Ohya, Y. Saiga, K. Suekuni, T. Takabatake, K. Akai and S. Yamamoto, Carrier Doping in the TypeVIII Clathrate Ba 8 Ga 16 Sn 30 Through Sb Substitution, J. Electron. Mater., 2011, 40(5), p 845–850.CrossRef
19.
go back to reference X. Tang, P. Li, S. Deng and Q. Zhang, High Temperature Thermoelectric Transport Properties of Double-Atom-Filled Clathrate Compounds YbxBa8−xGa16Ge30, J. Appl. Phys., 2008, 104, p 013706.CrossRef X. Tang, P. Li, S. Deng and Q. Zhang, High Temperature Thermoelectric Transport Properties of Double-Atom-Filled Clathrate Compounds YbxBa8xGa16Ge30, J. Appl. Phys., 2008, 104, p 013706.CrossRef
20.
go back to reference X. Zhang and L.D. Zhao, Thermoelectric Materials: Energy Conversion between Heat and Electricity, J. Materiomics, 2015, 1(2), p 92–105.CrossRef X. Zhang and L.D. Zhao, Thermoelectric Materials: Energy Conversion between Heat and Electricity, J. Materiomics, 2015, 1(2), p 92–105.CrossRef
21.
go back to reference Y. Chen, B. Du, K. Kajisa and T. Takabatake, Effects of In Substitution for Ga on the Thermoelectric Properties of Type-VIII Clathrate Ba8Ga16Sn30 Single Crystals, J. Electron. Mater., 2014, 43(6), p 1916–1921.CrossRef Y. Chen, B. Du, K. Kajisa and T. Takabatake, Effects of In Substitution for Ga on the Thermoelectric Properties of Type-VIII Clathrate Ba8Ga16Sn30 Single Crystals, J. Electron. Mater., 2014, 43(6), p 1916–1921.CrossRef
22.
go back to reference D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, London, 2005. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC Press, London, 2005.
23.
go back to reference D.Y. Meng, L.X. Shen, S. Xuxia, G.J. Dong and S.K. Deng, Growth and Thermoelectric Properties of Ge Doped N-Type Sn-Based Type-VIII Single Crystalline Clathrate, Acta Physica Sinica, 2013, 62(24), p 247401.CrossRef D.Y. Meng, L.X. Shen, S. Xuxia, G.J. Dong and S.K. Deng, Growth and Thermoelectric Properties of Ge Doped N-Type Sn-Based Type-VIII Single Crystalline Clathrate, Acta Physica Sinica, 2013, 62(24), p 247401.CrossRef
24.
go back to reference A. Bentien, M. Christensen, J.D. Bryan, A. Sanchez, S. Pa Schen, F. Steglich, G.D. Stucky and B.B. Iversen, Thermal Conductivity of Thermoelectric Clathrates, Phys. Rev. B Condens. Matter, 2004, 69(4), p 045107.1-045107.5.CrossRef A. Bentien, M. Christensen, J.D. Bryan, A. Sanchez, S. Pa Schen, F. Steglich, G.D. Stucky and B.B. Iversen, Thermal Conductivity of Thermoelectric Clathrates, Phys. Rev. B Condens. Matter, 2004, 69(4), p 045107.1-045107.5.CrossRef
25.
go back to reference J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G.J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, 2008, 321(5888), p 554–557.CrossRef J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G.J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, 2008, 321(5888), p 554–557.CrossRef
26.
go back to reference V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin and D.M. Rowe, Preparation and Thermoelectric Properties of A8IIB16IIIB30IV Clathrate compounds, J. Appl. Phys., 2000, 87(11), p 7871–7875.CrossRef V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin and D.M. Rowe, Preparation and Thermoelectric Properties of A8IIB16IIIB30IV Clathrate compounds, J. Appl. Phys., 2000, 87(11), p 7871–7875.CrossRef
27.
go back to reference Y. Saiga, B. Du, S.K. Deng, K. Kajisa and T. Takabatake, Thermoelectric Properties of Type-VIII Clathrate Ba8Ga16Sn30 Doped with Cu, J. Alloys Compd., 2012, 537, p 303–307.CrossRef Y. Saiga, B. Du, S.K. Deng, K. Kajisa and T. Takabatake, Thermoelectric Properties of Type-VIII Clathrate Ba8Ga16Sn30 Doped with Cu, J. Alloys Compd., 2012, 537, p 303–307.CrossRef
Metadata
Title
Preparation and Thermoelectric Properties of Type-VIII Single-Crystalline SmxBa8−xGa16Sn30 Clathrate
Authors
Lanxian Shen
Kaiyuan Shen
Wen Ge
Jie Zheng
Baihua He
Shukang Deng
Publication date
03-01-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06521-6

Other articles of this Issue 5/2022

Journal of Materials Engineering and Performance 5/2022 Go to the issue

Premium Partners