Skip to main content
Top

2020 | OriginalPaper | Chapter

3. Preparation of Graphene Based Nanocomposite Based on TPE

Authors : Abhijit Bandyopadhyay, Poulomi Dasgupta, Sayan Basak

Published in: Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the year 1959, professor Richard Feynman prognosticated the propitious future of nanomaterials with his famous speech, saying, “There's Plenty of Room at the Bottom. I can't see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of things on a small scale, we will get an enormously greater range of possible properties that substances can have, and of different things that we can do.”

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Feynman, R.: There’s Plenty of Room at the Bottom. Annual meeting of American Physical Society, California Institute of Technology (1959) Feynman, R.: There’s Plenty of Room at the Bottom. Annual meeting of American Physical Society, California Institute of Technology (1959)
2.
go back to reference Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRef Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRef
3.
go back to reference Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRef
4.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004) Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004)
5.
go back to reference Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)CrossRef Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)CrossRef
6.
go back to reference Sur, U.K.: Graphene: a rising star on the horizon of materials science. Int. J. Electrochem., Article ID 237689 (2012) Sur, U.K.: Graphene: a rising star on the horizon of materials science. Int. J. Electrochem., Article ID 237689 (2012)
7.
go back to reference Taghioskoui, M.: Trends in graphene research, Materials today, 2009, 12 (10) Taghioskoui, M.: Trends in graphene research, Materials today, 2009, 12 (10)
8.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRef
9.
go back to reference Ren, W., Cheng, H.M.: The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)CrossRef Ren, W., Cheng, H.M.: The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)CrossRef
10.
go back to reference Zhang, Y., Wu, S., Wen, Y.H., Zhu, Z.: Surface-passivation-induced metallic and magnetic properties of ZnO graphitic sheet. Phys. Lett. 96, 223113 (2010) Zhang, Y., Wu, S., Wen, Y.H., Zhu, Z.: Surface-passivation-induced metallic and magnetic properties of ZnO graphitic sheet. Phys. Lett. 96, 223113 (2010)
11.
go back to reference Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
12.
go back to reference Loh, K.P., Bao, Q., Anga, P.K., Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010)CrossRef Loh, K.P., Bao, Q., Anga, P.K., Yang, J.: The chemistry of graphene. J. Mater. Chem. 20, 2277–2289 (2010)CrossRef
13.
go back to reference Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRef Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRef
14.
go back to reference Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)CrossRef
15.
go back to reference Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res 1, 273–291 (2008)CrossRef Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res 1, 273–291 (2008)CrossRef
16.
go back to reference Avouris, P.: Graphene: electronic and photonic properties and devices. Nano Lett. 10(11), 4285–4294 (2010)CrossRef Avouris, P.: Graphene: electronic and photonic properties and devices. Nano Lett. 10(11), 4285–4294 (2010)CrossRef
17.
go back to reference Giannazzo, F., Raineri, V., Rimini, E.: Transport properties of graphene with nanoscale lateral resolution. Scann. Probe Microscopy Nanosci. Nanotechnol. 2, 247–258 (2011)CrossRef Giannazzo, F., Raineri, V., Rimini, E.: Transport properties of graphene with nanoscale lateral resolution. Scann. Probe Microscopy Nanosci. Nanotechnol. 2, 247–258 (2011)CrossRef
18.
go back to reference Aïssa, B., Memon, N.K., Ali, A., Khraisheh, M.K.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2, Article 58 (2015) Aïssa, B., Memon, N.K., Ali, A., Khraisheh, M.K.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2, Article 58 (2015)
21.
go back to reference Kesong, Hu., Kulkarni, D.D., Choi, I., Tsukruk, V.V.: Graphene-polymer nanocomposites for structuraland functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)CrossRef Kesong, Hu., Kulkarni, D.D., Choi, I., Tsukruk, V.V.: Graphene-polymer nanocomposites for structuraland functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)CrossRef
22.
go back to reference Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010)CrossRef Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010)CrossRef
23.
go back to reference Novoselov, K.S., Jiang, Z., Zhang, Y., et al.: Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007)CrossRef Novoselov, K.S., Jiang, Z., Zhang, Y., et al.: Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007)CrossRef
24.
go back to reference Leenaerts, O., et al.: Appl. Phys. Lett., 93 (2008) Leenaerts, O., et al.: Appl. Phys. Lett., 93 (2008)
25.
go back to reference Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachhev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Castro Meto, A.H., Novoselov, K.S.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013)CrossRef Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.J., Gorbachhev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Castro Meto, A.H., Novoselov, K.S.: Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013)CrossRef
26.
go back to reference El-Kady, M.F., Kaner, R.B.: Scalable fabrication of high-power graphenemicro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475/1–1475 (2013) El-Kady, M.F., Kaner, R.B.: Scalable fabrication of high-power graphenemicro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475/1–1475 (2013)
27.
go back to reference Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009) Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)
28.
go back to reference Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., Okamoto, A.: Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333–5338 (2012)CrossRef Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., Okamoto, A.: Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 24, 5333–5338 (2012)CrossRef
29.
go back to reference Hu, K., Gupta, M.K., Kulkarni, D.D., Tsukruk, V.V.: Ultra-robustgraphene oxide-silk fibroin nanocomposite membranes. Adv. Mater. 25, 2301–2307 (2013)CrossRef Hu, K., Gupta, M.K., Kulkarni, D.D., Tsukruk, V.V.: Ultra-robustgraphene oxide-silk fibroin nanocomposite membranes. Adv. Mater. 25, 2301–2307 (2013)CrossRef
30.
go back to reference Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., McAlpine, M.C.: Graphene-basedwireless bacteria detection on tooth enamel. Nat. Commun. 3, 763/1–763 (2012) Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., McAlpine, M.C.: Graphene-basedwireless bacteria detection on tooth enamel. Nat. Commun. 3, 763/1–763 (2012)
31.
go back to reference Guo, W., Cheng, C., Wu, Y., Jiang, Y., Gao, J., Li, D., Jiang, L.: Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25, 6064–6068 (2013)CrossRef Guo, W., Cheng, C., Wu, Y., Jiang, Y., Gao, J., Li, D., Jiang, L.: Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25, 6064–6068 (2013)CrossRef
32.
go back to reference Shahil, K.M.F., Balandin, A.A.: Thermal properties of graphene and mul-tilayer graphene: applications in thermal interface materials. Solid State Commun 152, 1331–1340 (2012)CrossRef Shahil, K.M.F., Balandin, A.A.: Thermal properties of graphene and mul-tilayer graphene: applications in thermal interface materials. Solid State Commun 152, 1331–1340 (2012)CrossRef
33.
go back to reference Oliveira, M., Machado, A.V.: Preparation of polymer-based nanocomposites by different routes. In: Wang, X. (ed.) Nanocomposites: Synthesis, Characterization and Applications, p. 21. NOVA Publishers Oliveira, M., Machado, A.V.: Preparation of polymer-based nanocomposites by different routes. In: Wang, X. (ed.) Nanocomposites: Synthesis, Characterization and Applications, p. 21. NOVA Publishers
34.
go back to reference Judeinstein, P., Sanchez, C.: Hybrid organic–inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6, 511–525 (1996)CrossRef Judeinstein, P., Sanchez, C.: Hybrid organic–inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6, 511–525 (1996)CrossRef
35.
go back to reference Rong, M.Z., Zhang, M.Q., Zheng, Y.X., Zeng, H.M., Friedrich, K.: Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42, 3301–3304 (2001)CrossRef Rong, M.Z., Zhang, M.Q., Zheng, Y.X., Zeng, H.M., Friedrich, K.: Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42, 3301–3304 (2001)CrossRef
36.
go back to reference Xu, C., Ohno, K., Ladmiral, V., Composto, R.J.: Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49, 3568–3577 (2008)CrossRef Xu, C., Ohno, K., Ladmiral, V., Composto, R.J.: Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49, 3568–3577 (2008)CrossRef
37.
go back to reference Liu, X., Wu, Q.: PP/clay nanocomposites prepared by grafting-melt Intercalation. Polymer 42, 10013–10019 (2001)CrossRef Liu, X., Wu, Q.: PP/clay nanocomposites prepared by grafting-melt Intercalation. Polymer 42, 10013–10019 (2001)CrossRef
38.
go back to reference Akpan, E.I., Shen, X., Wetzel, B., Friedrich, K.: Design and synthesis of polymer nanocomposites. In: Polymer Composites with Functionalized Nanoparticles, pp. 47–83. Elsevier (2019) Akpan, E.I., Shen, X., Wetzel, B., Friedrich, K.: Design and synthesis of polymer nanocomposites. In: Polymer Composites with Functionalized Nanoparticles, pp. 47–83. Elsevier (2019)
39.
go back to reference Yang, F., Ou, Y.,Yu, Z.: Polyamide 6/silica nanocomposites prepared by in situ polymerization. State Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China (1998) Yang, F., Ou, Y.,Yu, Z.: Polyamide 6/silica nanocomposites prepared by in situ polymerization. State Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China (1998)
40.
go back to reference Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28(1–2), 1–63 (2000)CrossRef Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28(1–2), 1–63 (2000)CrossRef
41.
go back to reference Reddy, R.J.: Preparation, characterization and properties of injection molded graphene nanocomposites, Master’s thesis, Mechanical Engineering, Wichita State University, Wichita, Kansas, USA (2010) Reddy, R.J.: Preparation, characterization and properties of injection molded graphene nanocomposites, Master’s thesis, Mechanical Engineering, Wichita State University, Wichita, Kansas, USA (2010)
42.
go back to reference Ravichandran, K., Praseetha, P.K., Arun, T., Gobalakrishnan, S.: Synthesis of nanocomposites. In: Synthesis of Inorganic Nanomaterials. Elsevier (2018) Ravichandran, K., Praseetha, P.K., Arun, T., Gobalakrishnan, S.: Synthesis of nanocomposites. In: Synthesis of Inorganic Nanomaterials. Elsevier (2018)
43.
go back to reference Fawaz, J., Mittal, V.: Synthesis of polymer nanocomposites: review of various techniques. In: Mittal, V. (ed.) Synthesis Techniques for Polymer Nanocomposites. Wiley (2015) Fawaz, J., Mittal, V.: Synthesis of polymer nanocomposites: review of various techniques. In: Mittal, V. (ed.) Synthesis Techniques for Polymer Nanocomposites. Wiley (2015)
44.
go back to reference Beyer, G.: Nano composites: a new class of flame retardants for polymers. Plastics Additives Compound., 22–28 (2002) Beyer, G.: Nano composites: a new class of flame retardants for polymers. Plastics Additives Compound., 22–28 (2002)
45.
go back to reference Rane, A.V., Kanny, K., Abitha, V.K., Patil, S.S., Thomas, S.: Clay-polymer composites: design of clay polymer nanocomposite by mixing. In: Clay-Polymer Nanocomposites. Elsevier (2017) Rane, A.V., Kanny, K., Abitha, V.K., Patil, S.S., Thomas, S.: Clay-polymer composites: design of clay polymer nanocomposite by mixing. In: Clay-Polymer Nanocomposites. Elsevier (2017)
46.
go back to reference Verma, D., Goh, K.L.: Functionalized graphene-based nanocomposites for energy applications. In: Functionalized Graphene Nanocomposites and Their Derivatives. Elsevier (2019) Verma, D., Goh, K.L.: Functionalized graphene-based nanocomposites for energy applications. In: Functionalized Graphene Nanocomposites and Their Derivatives. Elsevier (2019)
47.
go back to reference Rath, T., Li, Y.: Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: effect of nanoplatelet loading on morphology and mechanical properties. Composites: Part A 42, 1995–2002 (2011) Rath, T., Li, Y.: Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: effect of nanoplatelet loading on morphology and mechanical properties. Composites: Part A 42, 1995–2002 (2011)
48.
go back to reference Haghnegahdar, M., Naderi, G.,Ghoreishy, M.H.R.: Electrical and thermal properties of thermoplastic elastomer nanocomposite based on polypropylene/ethylene propylene diene monomer/graphene. Soft Mater. (2016) Haghnegahdar, M., Naderi, G.,Ghoreishy, M.H.R.: Electrical and thermal properties of thermoplastic elastomer nanocomposite based on polypropylene/ethylene propylene diene monomer/graphene. Soft Mater. (2016)
49.
go back to reference Tarawneh, M.A., Yu, L.J., Tarawni, M.A., Ahmad, S.H., Al-Banawi1, O., Batiha, M.A.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015) Tarawneh, M.A., Yu, L.J., Tarawni, M.A., Ahmad, S.H., Al-Banawi1, O., Batiha, M.A.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015)
50.
go back to reference Amin, M.: Methods for preparation of nano-composites for outdoor insulation applications. Rev. Adv. Mater. Sci. 34, 173–184 (2013) Amin, M.: Methods for preparation of nano-composites for outdoor insulation applications. Rev. Adv. Mater. Sci. 34, 173–184 (2013)
51.
go back to reference Pavlidou, S., Papaspyrides, C.D.: A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)CrossRef Pavlidou, S., Papaspyrides, C.D.: A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)CrossRef
52.
go back to reference Huan, G., Che, S., Tang, S., Gao, J.: A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135, 938–947 (2012)CrossRef Huan, G., Che, S., Tang, S., Gao, J.: A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater. Chem. Phys. 135, 938–947 (2012)CrossRef
53.
go back to reference Kuila, T., Khanra, P., Mishra, A.K., Kim, N.H., Lee, J.H.: Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Poly. Test. 31, 282–289 (2012) Kuila, T., Khanra, P., Mishra, A.K., Kim, N.H., Lee, J.H.: Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Poly. Test. 31, 282–289 (2012)
54.
go back to reference Nawaz, K., Khan, U., Ul-Haq, N., May, P., O’Neill, A., Coleman, J.N.: Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. Carbon 50, 4489–4494 (2012)CrossRef Nawaz, K., Khan, U., Ul-Haq, N., May, P., O’Neill, A., Coleman, J.N.: Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. Carbon 50, 4489–4494 (2012)CrossRef
55.
go back to reference Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C (2015) Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C (2015)
56.
go back to reference Mittal, V.: Polymer layered silicate nanocomposites: a review. Materials 2, 992–1057 (2009)CrossRef Mittal, V.: Polymer layered silicate nanocomposites: a review. Materials 2, 992–1057 (2009)CrossRef
57.
go back to reference Zheng, W., Lu, X., Wong, S.C.: Electrical and mechanical properties of expanded graphite-reinforced highdensity polyethylene. Appl Polym Sci J 91, 2781 (2004)CrossRef Zheng, W., Lu, X., Wong, S.C.: Electrical and mechanical properties of expanded graphite-reinforced highdensity polyethylene. Appl Polym Sci J 91, 2781 (2004)CrossRef
58.
go back to reference Lianga, J., Wanga, Y., Huanga, Y., Maa, Y., Liua, Z., Caib, J., Zhangb, C., Gaob, H., Chena, Y.: Electromagnetic interference shielding of graphene/epoxy composite. Carb J 47, 922 (2009)CrossRef Lianga, J., Wanga, Y., Huanga, Y., Maa, Y., Liua, Z., Caib, J., Zhangb, C., Gaob, H., Chena, Y.: Electromagnetic interference shielding of graphene/epoxy composite. Carb J 47, 922 (2009)CrossRef
59.
go back to reference Park, S., Rouff, S.: Chemical methods for the production of graphenes. Nat Nanotech J 4, 217 (2009)CrossRef Park, S., Rouff, S.: Chemical methods for the production of graphenes. Nat Nanotech J 4, 217 (2009)CrossRef
60.
go back to reference Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993)CrossRef Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993)CrossRef
61.
go back to reference Paszkiewicz, S., Szymczyk, A., Sui, X.M., Wagner, H.D., Linares, A., Ezquerra, T.A., Rosłaniec, Z.: Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization. Compos. Sci. Technol. (2015) Paszkiewicz, S., Szymczyk, A., Sui, X.M., Wagner, H.D., Linares, A., Ezquerra, T.A., Rosłaniec, Z.: Synergetic effect of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) in electrically conductive PTT-block-PTMO hybrid nanocomposites prepared by in situ polymerization. Compos. Sci. Technol. (2015)
62.
go back to reference Wang, X., Yuan, Hu., Song, L., Yang, H., Xinga, W., Hongdian, Lu.: In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21, 4222 (2011)CrossRef Wang, X., Yuan, Hu., Song, L., Yang, H., Xinga, W., Hongdian, Lu.: In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21, 4222 (2011)CrossRef
63.
go back to reference Backes, C., Higgins, T.M., Kelly, A., Boland, C., Harvey, A., Hanlon, D., et al.: Chem. Mater. 29, 243–255 (2017)CrossRef Backes, C., Higgins, T.M., Kelly, A., Boland, C., Harvey, A., Hanlon, D., et al.: Chem. Mater. 29, 243–255 (2017)CrossRef
64.
65.
66.
go back to reference Yuan, B., Bao, C., Qian, X., Jiang, S., Wen, P.,Xing, W., Song, L., Liew, K.M., Hu, Y.: Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind. Eng. Chem. Res. 53, 1143−1149 (2014) Yuan, B., Bao, C., Qian, X., Jiang, S., Wen, P.,Xing, W., Song, L., Liew, K.M., Hu, Y.: Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind. Eng. Chem. Res. 53, 1143−1149 (2014)
67.
go back to reference Tayebia, M., Ahmad Ramazani, S., Hamed Mosaviana, M.T., Tayyebi, A.: LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties. Polym. Adv. Technol. 26, 1083–1090 (2015) Tayebia, M., Ahmad Ramazani, S., Hamed Mosaviana, M.T., Tayyebi, A.: LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties. Polym. Adv. Technol. 26, 1083–1090 (2015)
68.
go back to reference Kim, H., Miura, Y., Macosko, C.W.: Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)CrossRef Kim, H., Miura, Y., Macosko, C.W.: Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)CrossRef
69.
go back to reference Liu, M., Papageorgiou, D.G., Li, S., Lin, K., Kinloch, I.A., Young, R.J.: Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Compos. A Appl. Sci. Manuf. 110, 84–92 (2018)CrossRef Liu, M., Papageorgiou, D.G., Li, S., Lin, K., Kinloch, I.A., Young, R.J.: Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Compos. A Appl. Sci. Manuf. 110, 84–92 (2018)CrossRef
70.
go back to reference Tarawneh, M., Yu, L.-J., Al-Tarawni, A., Ahmad, M., Al-Banawi, S., Batiha, M.O.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015) Tarawneh, M., Yu, L.-J., Al-Tarawni, A., Ahmad, M., Al-Banawi, S., Batiha, M.O.: High performance thermoplastic elastomer (TPE) nanocomposite based on graphene nanoplates (GNPs). World J. Eng. 12, 437–442 (2015)
71.
go back to reference Park, N.H., Kim, D.H., Kim, K.Y., Lim, D.Y., Ham, H.: Electrical properties of novel polyolefin based thermoplastic elastomer and graphene nanocomposites. Fibers Polym. 14(12), 2117–2121 (2013)CrossRef Park, N.H., Kim, D.H., Kim, K.Y., Lim, D.Y., Ham, H.: Electrical properties of novel polyolefin based thermoplastic elastomer and graphene nanocomposites. Fibers Polym. 14(12), 2117–2121 (2013)CrossRef
72.
go back to reference Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4(1), 157–166 (2016)CrossRef Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4(1), 157–166 (2016)CrossRef
Metadata
Title
Preparation of Graphene Based Nanocomposite Based on TPE
Authors
Abhijit Bandyopadhyay
Poulomi Dasgupta
Sayan Basak
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9085-6_3

Premium Partners