Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2011

01-06-2011 | Original Paper

Preparation of nanostructure hydroxyapatite scaffold for tissue engineering applications

Authors: H. Ghomi, M. H. Fathi, H. Edris

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydroxyapatite due to its good biocompatibility and similar chemical composition to the mineral part of bone has found various applications in tissue engineering. Porous hydroxyapatite has high surface area, which leads to excellent osteoconductivity and resorbability, providing fast bone ingrowth. In this study, highly porous body of nanostructure hydroxyapatite was successfully fabricated via gelcasting method. The pure phase of hydroxyapatite was confirmed by X-ray diffraction. The result of scanning electron microscopy analysis showed that the prepared scaffold has highly interconnected spherical pores with a size in the range 100–400 μm. The crystallite size of the hydroxyapatite scaffold was measured in the range 30–42 nm. The mean values of true (total) and apparent (interconnected) porosity were calculated in the range 84–91 and 70–78%, respectively. The maximum values of compressive strength and elastic modulus of the prepared scaffold were found to be about 1.5 MPa and 167 MPa, respectively, which were achieved after sintering at 1,000 °C for 4 h. Transmission electron microscopy analysis showed that the particle sizes are smaller than 80 nm. In vitro test showed good bioactivity of the prepared scaffold. The mentioned properties could make the hydroxyapatite scaffold a good candidate for tissue engineering applications, especially applications that did not need to stand any loading.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Le Huec JC, Schaeverbeke T, Clement D, Faber J, Le Rebeller A (1995) Influence of porosity on the mechanical resistance of hydroxyapatite under compressive stress. Biomater 16:113–118CrossRef Le Huec JC, Schaeverbeke T, Clement D, Faber J, Le Rebeller A (1995) Influence of porosity on the mechanical resistance of hydroxyapatite under compressive stress. Biomater 16:113–118CrossRef
2.
go back to reference Gauthier O, Bouler J, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomater 19:133–139CrossRef Gauthier O, Bouler J, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomater 19:133–139CrossRef
3.
go back to reference Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 8:131–136CrossRef Yoshikawa H, Myoui A (2005) Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 8:131–136CrossRef
4.
go back to reference Vacanti C, Vacanti J (1994) Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am 27:263–276 Vacanti C, Vacanti J (1994) Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am 27:263–276
5.
go back to reference Vacanti CA, Bonassar LJ (1999) An overview of tissue engineered bone. Clin Orthop 367:375–381CrossRef Vacanti CA, Bonassar LJ (1999) An overview of tissue engineered bone. Clin Orthop 367:375–381CrossRef
6.
go back to reference Levine JP, Bradly J, Turk AE, Ricci JL, Benedict JJ, Steiner G et al (1997) Bone morphogenetic protein promotes vascularization and osteoinduction in preformed hydroxyapatite in the rabbit. Ann Plastic Surg 39:258–268CrossRef Levine JP, Bradly J, Turk AE, Ricci JL, Benedict JJ, Steiner G et al (1997) Bone morphogenetic protein promotes vascularization and osteoinduction in preformed hydroxyapatite in the rabbit. Ann Plastic Surg 39:258–268CrossRef
7.
go back to reference Freidman CD, Costantino PD, Takagi S, Chow LC (1998) Bone source hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater 43:428–432CrossRef Freidman CD, Costantino PD, Takagi S, Chow LC (1998) Bone source hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater 43:428–432CrossRef
8.
go back to reference Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720CrossRef Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720CrossRef
9.
go back to reference Lauffenburger DA (1994) Cell engineering. In: Bronzine JD (ed) The biomedical engineering handbook. CRC Press, Boca Raton Lauffenburger DA (1994) Cell engineering. In: Bronzine JD (ed) The biomedical engineering handbook. CRC Press, Boca Raton
10.
go back to reference Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater 49:328–337CrossRef Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater 49:328–337CrossRef
11.
go back to reference Gu J, Xie J (2002) Experimental study on stimulation of guided bone regeneration by autogenous bone marrow. Chinese J Repar Reconst Surg 16:112–113 Gu J, Xie J (2002) Experimental study on stimulation of guided bone regeneration by autogenous bone marrow. Chinese J Repar Reconst Surg 16:112–113
12.
go back to reference Jie Q, Dai X, Cao Q (2002) Massive allograft for defects after bone malignant tumor resection. Chinese J Modern Med 12:60–62 Jie Q, Dai X, Cao Q (2002) Massive allograft for defects after bone malignant tumor resection. Chinese J Modern Med 12:60–62
13.
go back to reference Lee FY, Hazan EJ, Gebhardt MC, Mankin HJ (2000) Experimental model for allograft incorporation and allograft fracture repair. J Orthop 18:303–306 Lee FY, Hazan EJ, Gebhardt MC, Mankin HJ (2000) Experimental model for allograft incorporation and allograft fracture repair. J Orthop 18:303–306
14.
go back to reference Ramay HR, Zhang M (2003) Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomater 24:3293–3302CrossRef Ramay HR, Zhang M (2003) Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomater 24:3293–3302CrossRef
15.
go back to reference Sopyan I, Mel M, Ramesh S, Khalid KA (2007) Porous hydroxyapatite for artificial bone applications. Sci Technol Adv Mater 8:116–123CrossRef Sopyan I, Mel M, Ramesh S, Khalid KA (2007) Porous hydroxyapatite for artificial bone applications. Sci Technol Adv Mater 8:116–123CrossRef
16.
go back to reference Sepulveda P, Binner JGP, Rogero SO, Higa OZ, Bressiani JC (2000) Production of porous hydroxyapatite by the gel casting of foams and cytotoxic evaluation. J Biomed Mater Res 50:27–34CrossRef Sepulveda P, Binner JGP, Rogero SO, Higa OZ, Bressiani JC (2000) Production of porous hydroxyapatite by the gel casting of foams and cytotoxic evaluation. J Biomed Mater Res 50:27–34CrossRef
17.
go back to reference Chen B, Zhang Z, Zhang J, Dong M, Jiang D (2006) Aqueous gel-casting of hydroxyapatite. Mater Sci Eng A 198:435–436 Chen B, Zhang Z, Zhang J, Dong M, Jiang D (2006) Aqueous gel-casting of hydroxyapatite. Mater Sci Eng A 198:435–436
18.
go back to reference Potoczek M (2008) Hydroxyapatite foams produced by gelcasting using agarose. Mater Lett 62:1055–1057CrossRef Potoczek M (2008) Hydroxyapatite foams produced by gelcasting using agarose. Mater Lett 62:1055–1057CrossRef
19.
go back to reference Sepulveda P, Ortega FS, Innocentini MDM, Pandolfelli VC (2000) Properties of highly porous hydroxyapatite obtained by the gelcasting of foams. J Am Ceram Soc 83:3021–3024CrossRef Sepulveda P, Ortega FS, Innocentini MDM, Pandolfelli VC (2000) Properties of highly porous hydroxyapatite obtained by the gelcasting of foams. J Am Ceram Soc 83:3021–3024CrossRef
20.
go back to reference Tang YJ, Tang YF, Lv CT, Zhou ZH (2008) Preparation of uniform porous hydroxyapatite biomaterials by a new method. Appl Surface Sci 254:5359–5362CrossRef Tang YJ, Tang YF, Lv CT, Zhou ZH (2008) Preparation of uniform porous hydroxyapatite biomaterials by a new method. Appl Surface Sci 254:5359–5362CrossRef
21.
go back to reference Wei GB, Pettway GJ, McCauley LK, Ma PX (2004) The release profiles and bioactivity of parathyroid hormone from poly (lactic-co-glycolic acid) microspheres. Biomater 25:345–352CrossRef Wei GB, Pettway GJ, McCauley LK, Ma PX (2004) The release profiles and bioactivity of parathyroid hormone from poly (lactic-co-glycolic acid) microspheres. Biomater 25:345–352CrossRef
22.
go back to reference Du C, Cui FZ, Zhu XD, De Groot K (1999) Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater 44:407–415CrossRef Du C, Cui FZ, Zhu XD, De Groot K (1999) Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater 44:407–415CrossRef
23.
go back to reference Ferraz MP, Monteiro FJ, Manuel CM (2004) Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech 2:74–80 Ferraz MP, Monteiro FJ, Manuel CM (2004) Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech 2:74–80
24.
go back to reference Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Boston, USA Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Boston, USA
25.
go back to reference Askeland DR (1989) The science and engineering of materials, 2nd ed. PWS Pub.Co, Boston Askeland DR (1989) The science and engineering of materials, 2nd ed. PWS Pub.Co, Boston
26.
go back to reference Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomater 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomater 27:2907–2915CrossRef
27.
go back to reference Potoczek M, Zima A, Paszkiewicz Z, Slosarczyk A (2009) Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose. Ceram Int 35:2249–2254CrossRef Potoczek M, Zima A, Paszkiewicz Z, Slosarczyk A (2009) Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose. Ceram Int 35:2249–2254CrossRef
28.
go back to reference Webster TJ, Siegel RW, Bizios R (2001) Enhanced surface and mechanical properties of nanophase ceramics to achieve orthopaedic/dental implant efficacy. Key Eng Mater 192–195:321–324CrossRef Webster TJ, Siegel RW, Bizios R (2001) Enhanced surface and mechanical properties of nanophase ceramics to achieve orthopaedic/dental implant efficacy. Key Eng Mater 192–195:321–324CrossRef
29.
go back to reference Webster TJ, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomater 21:1803–1810CrossRef Webster TJ, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomater 21:1803–1810CrossRef
30.
go back to reference Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Materi Res 5:475–483CrossRef Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Materi Res 5:475–483CrossRef
31.
go back to reference Fathi MH, Hanifi A, Mortazavi V (2008) Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol 202:536–542CrossRef Fathi MH, Hanifi A, Mortazavi V (2008) Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol 202:536–542CrossRef
32.
go back to reference Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method. Mater Lett 67:3978–3983CrossRef Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method. Mater Lett 67:3978–3983CrossRef
33.
go back to reference Oh S, Oh N, Appleford M, Ong JL (2006) Bioceramics for tissue engineering applications. Am J Biochem Biotechnol 2:49–56CrossRef Oh S, Oh N, Appleford M, Ong JL (2006) Bioceramics for tissue engineering applications. Am J Biochem Biotechnol 2:49–56CrossRef
Metadata
Title
Preparation of nanostructure hydroxyapatite scaffold for tissue engineering applications
Authors
H. Ghomi
M. H. Fathi
H. Edris
Publication date
01-06-2011
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2011
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-011-2439-2

Other articles of this Issue 3/2011

Journal of Sol-Gel Science and Technology 3/2011 Go to the issue

Premium Partners