Skip to main content
Top
Published in:

29-07-2016

Pressure-induced formation of highly controlled branched silicon nanowires suitable for broadband absorption

Authors: M. Sadeghipari, L. Mehrvar, M. Hajmirzaheydarali, F. Salehi, S. Mohajerzadeh, H. Tavassoli

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report the realization of branched silicon nanowires (SiNWs) by means of controlling the pressure during vapor–liquid–solid growth. Gold nanoparticles migrated from the main catalyst droplet act as seeds for the secondary growth of SiNWs across the trunk sidewall. To have gold nanoparticles migration as well as fewer kinks in the trunks, it is crucial to gradually reduce the pressure, which results in fully covered branched SiNWs. Transmission electron microscopy confirmed the crystallinity of the Si nano-branches by SAED analysis. From optical spectroscopy, it is observed that the light absorption is around 98 % over a wide range of wavelengths from 300 to 600 nm and drops to 90 % for higher wavelengths. It is shown that high absorption is due to the excitation of Mie resonances and waveguide modes in Si nanostructures. In order to confirm the presence of these optical modes, Raman spectroscopy has been used. Raman spectrum of branched SiNWs indicates higher enhancement factor compared to plain SiNWs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003)CrossRef Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003)CrossRef
2.
go back to reference L. Luo, L. Zeng, C. Xie, Y. Yu, F. Liang, C. Wu, L. Wang, J. Hu, Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci. Rep. 4, 3914–3918 (2014) L. Luo, L. Zeng, C. Xie, Y. Yu, F. Liang, C. Wu, L. Wang, J. Hu, Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci. Rep. 4, 3914–3918 (2014)
3.
go back to reference F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1, 1711–1724 (2006)CrossRef F. Patolsky, G. Zheng, C.M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1, 1711–1724 (2006)CrossRef
4.
go back to reference M. Levis, P. Faucherand, S. Perraud, P. Thony, C. Jaussaud, Solar energy materials & solar cells full process for integrating silicon nanowire arrays into solar cells. Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009)CrossRef M. Levis, P. Faucherand, S. Perraud, P. Thony, C. Jaussaud, Solar energy materials & solar cells full process for integrating silicon nanowire arrays into solar cells. Sol. Energy Mater. Sol. Cells 93, 1568–1571 (2009)CrossRef
5.
go back to reference B.V. Schmidt, J.V. Wittemann, S. Senz, U. Go, Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681–2702 (2009)CrossRef B.V. Schmidt, J.V. Wittemann, S. Senz, U. Go, Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681–2702 (2009)CrossRef
6.
go back to reference Y.F. Zhang, Y.H. Tang, H.Y. Peng, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Y.F. Zhang, Y.H. Tang, H.Y. Peng, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Diameter modification of silicon nanowires by ambient gas diameter modification of silicon nanowires by ambient gas. Appl. Phys. Lett. 75, 1842–1844 (1999)CrossRef Y.F. Zhang, Y.H. Tang, H.Y. Peng, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Y.F. Zhang, Y.H. Tang, H.Y. Peng, N. Wang, C.S. Lee, I. Bello, S.T. Lee, Diameter modification of silicon nanowires by ambient gas diameter modification of silicon nanowires by ambient gas. Appl. Phys. Lett. 75, 1842–1844 (1999)CrossRef
7.
go back to reference Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001)CrossRef Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001)CrossRef
8.
go back to reference A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A.J. Flewitt, W.I. Milne, J. Robertson, C. Ducati, S. De Franceschi, Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties. J. Appl. Phys. 102, 034302 (2007)CrossRef A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A.J. Flewitt, W.I. Milne, J. Robertson, C. Ducati, S. De Franceschi, Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties. J. Appl. Phys. 102, 034302 (2007)CrossRef
9.
go back to reference L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, C.M. Lieber, Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13, 746–751 (2013)CrossRef L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang, C.M. Lieber, Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 13, 746–751 (2013)CrossRef
10.
go back to reference B.J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N.S. Xu, Z.L. Wang, Three-dimensional tungsten oxide nanowire networks. Adv. Mater. 17, 2107–2110 (2005)CrossRef B.J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N.S. Xu, Z.L. Wang, Three-dimensional tungsten oxide nanowire networks. Adv. Mater. 17, 2107–2110 (2005)CrossRef
11.
go back to reference B.Q. Wan, M. Wei, D. Zhi, J.L. Macmanus-driscoll, M.G. Blamire, Epitaxial growth of vertically aligned and branched single-crystalline tin-doped indium oxide nanowire arrays. Adv. Mater. 18, 234–238 (2006)CrossRef B.Q. Wan, M. Wei, D. Zhi, J.L. Macmanus-driscoll, M.G. Blamire, Epitaxial growth of vertically aligned and branched single-crystalline tin-doped indium oxide nanowire arrays. Adv. Mater. 18, 234–238 (2006)CrossRef
12.
go back to reference Z. Gu, F. Liu, J.Y. Howe, M.P. Paranthaman, Three-dimensional germanium oxide nanowire networks. Cryst. Growth Des. 9, 35–39 (2008)CrossRef Z. Gu, F. Liu, J.Y. Howe, M.P. Paranthaman, Three-dimensional germanium oxide nanowire networks. Cryst. Growth Des. 9, 35–39 (2008)CrossRef
13.
go back to reference J.R. Szczech, S. Jin, Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning. J. Mater. Chem. 20, 1375–1382 (2010)CrossRef J.R. Szczech, S. Jin, Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning. J. Mater. Chem. 20, 1375–1382 (2010)CrossRef
14.
go back to reference M. Rauber, I. Alber, M. Sven, R. Neumann, O. Picht, C. Roth, A. Sch, M.E. Toimil-molares, W. Ensinger, Highly-ordered supportless three-dimensional nanowire networks with tunable complexity and interwire connectivity for device integration. Nano Lett. 11, 2304–2310 (2011)CrossRef M. Rauber, I. Alber, M. Sven, R. Neumann, O. Picht, C. Roth, A. Sch, M.E. Toimil-molares, W. Ensinger, Highly-ordered supportless three-dimensional nanowire networks with tunable complexity and interwire connectivity for device integration. Nano Lett. 11, 2304–2310 (2011)CrossRef
15.
go back to reference M.J. Bierman, S. Jin, P.T. Anastas, Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2, 1050–1059 (2009)CrossRef M.J. Bierman, S. Jin, P.T. Anastas, Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2, 1050–1059 (2009)CrossRef
16.
go back to reference D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber, Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4, 871–874 (2004)CrossRef D. Wang, F. Qian, C. Yang, Z. Zhong, C.M. Lieber, Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4, 871–874 (2004)CrossRef
17.
go back to reference K.A. Dick, K. Deppert, M.W. Larsson, W. Seifert, L.R. Wallenberg, L. Samuelson, Height-controlled nanowire branches on nanotrees using a polymer mask. Nanotechnology 18, 035601 (2007)CrossRef K.A. Dick, K. Deppert, M.W. Larsson, W. Seifert, L.R. Wallenberg, L. Samuelson, Height-controlled nanowire branches on nanotrees using a polymer mask. Nanotechnology 18, 035601 (2007)CrossRef
18.
go back to reference M.J. Bierman, Y.K.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008)CrossRef M.J. Bierman, Y.K.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin, Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008)CrossRef
19.
go back to reference C. Cheng, H. Jin, Branched nanowires: synthesis and energy applications. Nano Today 7, 327–343 (2012)CrossRef C. Cheng, H. Jin, Branched nanowires: synthesis and energy applications. Nano Today 7, 327–343 (2012)CrossRef
20.
go back to reference A.L. Beaudry, R.T. Tucker, J.M. La-Forge, Indium tin oxide nanowhisker morphology control by vapour–liquid–solid glancing angle deposition. Nanotechnology 23, 105608 (2012)CrossRef A.L. Beaudry, R.T. Tucker, J.M. La-Forge, Indium tin oxide nanowhisker morphology control by vapour–liquid–solid glancing angle deposition. Nanotechnology 23, 105608 (2012)CrossRef
21.
go back to reference R.R. Kumar, V. Gaddam, K.N. Rao, K. Rajana, Low temperature VLS growth of ITO nanowires by electron beam evaporation method. Mater. Res. Express 1(3), 035008 (2014)CrossRef R.R. Kumar, V. Gaddam, K.N. Rao, K. Rajana, Low temperature VLS growth of ITO nanowires by electron beam evaporation method. Mater. Res. Express 1(3), 035008 (2014)CrossRef
22.
go back to reference L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007)CrossRef L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007)CrossRef
23.
go back to reference O.L. Muskens, J.G. Rivas, R.E. Algra, E.P. Bakkers, A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8, 2638–2642 (2008)CrossRef O.L. Muskens, J.G. Rivas, R.E. Algra, E.P. Bakkers, A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8, 2638–2642 (2008)CrossRef
24.
go back to reference C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008) C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008)
25.
go back to reference S. Mann, R.R. Grote, R.M. Osgood, J. Schuller, Dielectric particle and void resonators for thin film solar cell textures. Opt. Express 19, 25729–25740 (2011)CrossRef S. Mann, R.R. Grote, R.M. Osgood, J. Schuller, Dielectric particle and void resonators for thin film solar cell textures. Opt. Express 19, 25729–25740 (2011)CrossRef
26.
go back to reference T. Kawashima, T. Mizutani, T. Nakagawa, H. Torii, Control of surface migration of gold particles on Si nanowires. Nano Lett. 8, 362–368 (2008)CrossRef T. Kawashima, T. Mizutani, T. Nakagawa, H. Torii, Control of surface migration of gold particles on Si nanowires. Nano Lett. 8, 362–368 (2008)CrossRef
27.
go back to reference S. Kodambaka, J.B. Hannon, R.M. Tromp, F.M. Ross, Control of Si nanowire growth by oxygen. Nano Lett. 6, 1292–1296 (2006)CrossRef S. Kodambaka, J.B. Hannon, R.M. Tromp, F.M. Ross, Control of Si nanowire growth by oxygen. Nano Lett. 6, 1292–1296 (2006)CrossRef
28.
go back to reference E. Kim, Y. Cho, K.-T. Park, J.-H. Choi, S.-H. Lim, Y.-H. Cho, Y.-H. Nam, J.-H. Lee, D.W. Kim, Mie resonance-mediated antireflection effects of Si nanocone arrays fabricated on 8-in. wafers using a nanoimprint technique. Nanoscale Res. Lett. 10, 1–5 (2015)CrossRef E. Kim, Y. Cho, K.-T. Park, J.-H. Choi, S.-H. Lim, Y.-H. Cho, Y.-H. Nam, J.-H. Lee, D.W. Kim, Mie resonance-mediated antireflection effects of Si nanocone arrays fabricated on 8-in. wafers using a nanoimprint technique. Nanoscale Res. Lett. 10, 1–5 (2015)CrossRef
29.
go back to reference P. Spinelli, M.A. Verschuuren, A. Polman, Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012)CrossRef P. Spinelli, M.A. Verschuuren, A. Polman, Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012)CrossRef
30.
go back to reference Z.Y. Wang, R.J. Zhang, S.Y. Wang, M. Lu, X. Chen, Y.X. Zheng, L.Y. Chen, Z. Ye, C.Z. Wang, K.M. Ho, Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays. Sci. Rep. 5, 1–6 (2015) Z.Y. Wang, R.J. Zhang, S.Y. Wang, M. Lu, X. Chen, Y.X. Zheng, L.Y. Chen, Z. Ye, C.Z. Wang, K.M. Ho, Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays. Sci. Rep. 5, 1–6 (2015)
31.
go back to reference E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010)CrossRef E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010)CrossRef
32.
go back to reference J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2009)CrossRef J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2009)CrossRef
33.
go back to reference L. Hong, C.L. Rusli, X. Wang, H. Wang, X. Xu, L. He, H. Zheng, Towards perfect anti-reflection and absorption for nanodome-array thin film silicon solar cell. Energy Procedia 33, 150–156 (2013)CrossRef L. Hong, C.L. Rusli, X. Wang, H. Wang, X. Xu, L. He, H. Zheng, Towards perfect anti-reflection and absorption for nanodome-array thin film silicon solar cell. Energy Procedia 33, 150–156 (2013)CrossRef
34.
go back to reference F.J. Bezares, J.P. Long, O.J. Glembocki, J. Guo, R.W. Rendell, R. Kasica, L. Shirey, J.C. Owrutsky, J.D. Caldwell, Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays. Opt. Express 21, 27587–27601 (2013)CrossRef F.J. Bezares, J.P. Long, O.J. Glembocki, J. Guo, R.W. Rendell, R. Kasica, L. Shirey, J.C. Owrutsky, J.D. Caldwell, Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays. Opt. Express 21, 27587–27601 (2013)CrossRef
35.
go back to reference L. Cao, B. Nabet, J.E. Spanier, Enhanced Raman scattering from individual semiconductor nanocones and nanowires. Phys. Rev. Lett. 96, 157402 (2006)CrossRef L. Cao, B. Nabet, J.E. Spanier, Enhanced Raman scattering from individual semiconductor nanocones and nanowires. Phys. Rev. Lett. 96, 157402 (2006)CrossRef
36.
go back to reference M.S. Schmidt, J. Hübner, A. Boisen, Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 24, OP11–OP18 (2012) M.S. Schmidt, J. Hübner, A. Boisen, Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 24, OP11–OP18 (2012)
Metadata
Title
Pressure-induced formation of highly controlled branched silicon nanowires suitable for broadband absorption
Authors
M. Sadeghipari
L. Mehrvar
M. Hajmirzaheydarali
F. Salehi
S. Mohajerzadeh
H. Tavassoli
Publication date
29-07-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5426-0