Skip to main content
Top

2021 | OriginalPaper | Chapter

Price Forecasting with Deep Learning in Business to Consumer Markets

Authors : Emre Eğriboz, Mehmet S. Aktaş

Published in: Computational Science and Its Applications – ICCSA 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Price forecasting is a challenging and essential problem studied in different markets. Many researchers and institutions, academically and professionally, develop future price forecasting techniques. This study proposes a data collection and processing pipeline to forecast the next day’s price of a product in business to consumer (B2C) markets using the price data obtained from web crawlers, preprocessing steps, the deep features produced by the autoencoder, and the technical indicators. For this purpose, we use web crawlers to collect different airline companies’ ticket prices daily and create a price index. We apply the discrete wavelet transform (DWT) preprocessing method to denoise the price index data, calculate some technical indicators analytically, and extract the deep features of the price data via three different autoencoders, linear, stacked linear, and long short term memory (LSTM). An LSTM forecaster generates forecasts using deep and calculated features. Finally, we measure the effects of autoencoder types, and mentioned features on the forecasting performance. Our study shows that using LSTM autoencoder on denoised time series price data with technical indicators in B2C markets yields promising results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Zhao, K., Wang, C.: Sales forecast in e-commerce using convolutional neural network (2017) Zhao, K., Wang, C.: Sales forecast in e-commerce using convolutional neural network (2017)
7.
12.
go back to reference Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS ONE 12(7), e0180944 (2017)CrossRef Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS ONE 12(7), e0180944 (2017)CrossRef
15.
go back to reference Tas, Y., Baeth, M., Aktas, M.: An approach to standalone provenance systems for big social provenance data. In: 2016 12th International Conference on Semantics, Knowledge and Grids (SKG), pp. 9–16 (2016) Tas, Y., Baeth, M., Aktas, M.: An approach to standalone provenance systems for big social provenance data. In: 2016 12th International Conference on Semantics, Knowledge and Grids (SKG), pp. 9–16 (2016)
16.
go back to reference Riveni, M., Nguyen, T., Aktas, M., Dustdar, S.: Application of provenance in social computing: a case study. Concurr. Comput.: Pract. Exp. 31(3), e4894 (2019)CrossRef Riveni, M., Nguyen, T., Aktas, M., Dustdar, S.: Application of provenance in social computing: a case study. Concurr. Comput.: Pract. Exp. 31(3), e4894 (2019)CrossRef
17.
go back to reference Baeth, M., Aktas, M.: An approach to custom privacy policy violation detection problems using big social provenance data. Concurr. Comput.: Pract. Exp. 30(21), e4690 (2018)CrossRef Baeth, M., Aktas, M.: An approach to custom privacy policy violation detection problems using big social provenance data. Concurr. Comput.: Pract. Exp. 30(21), e4690 (2018)CrossRef
18.
go back to reference Baeth, M., Aktas, M.: Detecting misinformation in social networks using provenance data. Concurr. Comput.: Pract. Exp. 31(3), e4793 (2019)CrossRef Baeth, M., Aktas, M.: Detecting misinformation in social networks using provenance data. Concurr. Comput.: Pract. Exp. 31(3), e4793 (2019)CrossRef
20.
go back to reference Tufek, A., Gurbuz, A., Ekuklu, O.F., Aktas, M.S.: Provenance collection platform for the weather research and forecasting model. In: 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), SKG ’18, 14th International Conference on Semantics, Knowledge and Grids (SKG), Guangzhou, China, IEEE, pp. 17–24 (2018). https://doi.org/10.1109/SKG.2018.00009 Tufek, A., Gurbuz, A., Ekuklu, O.F., Aktas, M.S.: Provenance collection platform for the weather research and forecasting model. In: 2018 14th International Conference on Semantics, Knowledge and Grids (SKG), SKG ’18, 14th International Conference on Semantics, Knowledge and Grids (SKG), Guangzhou, China, IEEE, pp. 17–24 (2018). https://​doi.​org/​10.​1109/​SKG.​2018.​00009
21.
go back to reference Yazıcı, I., Karabulut, E., Aktas, M.: A data provenance visualization approach. In: The 14th International Conference on Semantics, Knowledge and Grids (2018) Yazıcı, I., Karabulut, E., Aktas, M.: A data provenance visualization approach. In: The 14th International Conference on Semantics, Knowledge and Grids (2018)
22.
go back to reference Uygun, Y., Oguz, R., Olmezogullari, E., Aktas, M.: On the large-scale graph data processing for user interface testing in big data science projects. In: IEEE BigData 2020, pp. 2049–2056. IEEE (2020) Uygun, Y., Oguz, R., Olmezogullari, E., Aktas, M.: On the large-scale graph data processing for user interface testing in big data science projects. In: IEEE BigData 2020, pp. 2049–2056. IEEE (2020)
23.
go back to reference Olmezogullari, E., Aktas, M.: Representation of click-stream data sequences for learning user navigational behavior by using embeddings. In: In: IEEE BigData 2020, pp. 3173–3179. IEEE (2020) Olmezogullari, E., Aktas, M.: Representation of click-stream data sequences for learning user navigational behavior by using embeddings. In: In: IEEE BigData 2020, pp. 3173–3179. IEEE (2020)
24.
go back to reference Li, Y., Cao, H.: Prediction for tourism flow based on LSTM neural network. Procedia Comput. Sci. 129, 277–283 (2018)CrossRef Li, Y., Cao, H.: Prediction for tourism flow based on LSTM neural network. Procedia Comput. Sci. 129, 277–283 (2018)CrossRef
28.
go back to reference Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)MATH Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)MATH
29.
go back to reference Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Physica A 519, 127–139 (2019)CrossRef Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Physica A 519, 127–139 (2019)CrossRef
30.
go back to reference Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. Energies 11(7), 1636 (2018)CrossRef Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. Energies 11(7), 1636 (2018)CrossRef
31.
go back to reference Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRef Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRef
32.
go back to reference Ramsey, J.B., Lampart, C.: The decomposition of economic relationships by time scale using wavelets: expenditure and income. Stud. Nonlinear Dyn. Econ. 3(1) (1998) Ramsey, J.B., Lampart, C.: The decomposition of economic relationships by time scale using wavelets: expenditure and income. Stud. Nonlinear Dyn. Econ. 3(1) (1998)
33.
go back to reference Chollet, F., et al.: Deep Learning with Python, vol. 361. Manning, New York (2018) Chollet, F., et al.: Deep Learning with Python, vol. 361. Manning, New York (2018)
Metadata
Title
Price Forecasting with Deep Learning in Business to Consumer Markets
Authors
Emre Eğriboz
Mehmet S. Aktaş
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-86979-3_40

Premium Partner