Skip to main content
Top

2024 | OriginalPaper | Chapter

Primary Carmichael Integers and Carmichael Ideals

Authors : D. Arya, T. Sridhar, Anirudh Sathish, Subramani Muthukrishnan

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we explicitly construct Carmichael integers with 8, 9 and 10 prime factors, and Carmichael integers of degree 1 and 2 with 3 and 4 prime factors, respectively. We also study Carmichael ideals in number fields and address a few quantitative results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alford, W.R., Granville, A., Pomerance, C.: There are infinitely many Carmichael numbers. Ann Math. 139(2, 3), 703–722 (1994) Alford, W.R., Granville, A., Pomerance, C.: There are infinitely many Carmichael numbers. Ann Math. 139(2, 3), 703–722 (1994)
2.
go back to reference Korselt, A.R.: Probléme chinois. L’intermédiaire des mathématiciens 6, 142–143 (1899) Korselt, A.R.: Probléme chinois. L’intermédiaire des mathématiciens 6, 142–143 (1899)
3.
go back to reference Chernick, J.: On Fermat’s simple theorem, Bull. Am. Math. Soc. 45, 269–274 (1939) Chernick, J.: On Fermat’s simple theorem, Bull. Am. Math. Soc. 45, 269–274 (1939)
4.
go back to reference Wagstaff, S.S.: Primary carmichael integers. Integers 22, #A55, 1–8 (2022) Wagstaff, S.S.: Primary carmichael integers. Integers 22, #A55, 1–8 (2022)
5.
go back to reference Erdős, P.: On pseudoprimes and Carmichael numbers. Publ. Math. Debrecen 4, 201–206 (1956) Erdős, P.: On pseudoprimes and Carmichael numbers. Publ. Math. Debrecen 4, 201–206 (1956)
6.
go back to reference Harman, G.: Watt’s mean value theorem and Carmichael numbers. Int. J. Number Theory 4, 241–248 (2008) Harman, G.: Watt’s mean value theorem and Carmichael numbers. Int. J. Number Theory 4, 241–248 (2008)
7.
go back to reference Balasubramanian, R., Nagaraj, S.V.: Density of Carmichael numbers with three prime factors. Math. Comput 66, 1705–1708 (1997) Balasubramanian, R., Nagaraj, S.V.: Density of Carmichael numbers with three prime factors. Math. Comput 66, 1705–1708 (1997)
8.
go back to reference Alford, W.R., Grantham, J., Hayman, S., Shallue, A.: Constructing Carmichael numbers through improved subset-product algorithms. Math. Comput. 83, 899–915 (2014) Alford, W.R., Grantham, J., Hayman, S., Shallue, A.: Constructing Carmichael numbers through improved subset-product algorithms. Math. Comput. 83, 899–915 (2014)
10.
go back to reference Kellner, B.C., Sondow, J.: On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits. Integers 21, #A52, 1–21 (2021) Kellner, B.C., Sondow, J.: On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits. Integers 21, #A52, 1–21 (2021)
11.
go back to reference Ander, S.G.: Carmichael numbers in number rings. J. Number Theory 128(4), 910–917 (2008) Ander, S.G.: Carmichael numbers in number rings. J. Number Theory 128(4), 910–917 (2008)
13.
go back to reference Murty, M.R., Esmonde, J.I.: Problems in Algebraic Number Theory. Graduate Texts in Mathematics. Springer (2005) Murty, M.R., Esmonde, J.I.: Problems in Algebraic Number Theory. Graduate Texts in Mathematics. Springer (2005)
14.
go back to reference Gica, A.: Quadratic residues of certain types. Rocky Mt. J. Math. 36, 6 (2006) Gica, A.: Quadratic residues of certain types. Rocky Mt. J. Math. 36, 6 (2006)
15.
go back to reference Pollack, P.: The smallest prime that splits completely in an abelian number field. Proc. Am. Math. Soc. 142(6), 1925–1934 (2014) Pollack, P.: The smallest prime that splits completely in an abelian number field. Proc. Am. Math. Soc. 142(6), 1925–1934 (2014)
Metadata
Title
Primary Carmichael Integers and Carmichael Ideals
Authors
D. Arya
T. Sridhar
Anirudh Sathish
Subramani Muthukrishnan
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_16

Premium Partner