Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Principles of the Dimensional Analysis

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nearly all scientists at conjunction with simplifying a differential equation have probably used dimensional analysis. Dimensional analysis (also called the factor-label method or the unit factor method) is an approach to problem that uses the fact that one can multiply any number or expression without changing its value. This is a useful technique. However, the reader should take care to understand that chemistry is not simply a mathematics problem. In every physical problem, the result must match the real world.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.I. Barenblatt, Dimensional Analysis (Gordon and Breach Science, New York, 1987) G.I. Barenblatt, Dimensional Analysis (Gordon and Breach Science, New York, 1987)
2.
go back to reference Galileo Galilei, Discorsi e Dimostrazioni Matematiche intorno à due nuoue scienze Attenenti alla Mecanica & i Movimenti Locali (1638) Galileo Galilei, Discorsi e Dimostrazioni Matematiche intorno à due nuoue scienze Attenenti alla Mecanica & i Movimenti Locali (1638)
3.
go back to reference I. Stewart, Does God Play Dice (Penguin, London, 1989), p. 219MATH I. Stewart, Does God Play Dice (Penguin, London, 1989), p. 219MATH
4.
go back to reference Tina Komulainen, Helsinki University of Technology, Laboratory of Process Control and Automation. tiina.komulainen@hut.fi Tina Komulainen, Helsinki University of Technology, Laboratory of Process Control and Automation. tiina.komulainen@hut.fi
5.
go back to reference J. Sylvan Katz, The Self-Similar Science System. Research Policy 28, 501–517 (1999)CrossRef J. Sylvan Katz, The Self-Similar Science System. Research Policy 28, 501–517 (1999)CrossRef
9.
go back to reference P. Krugman, The Self-Organizing Economy (Blackwell, Oxford, 1996) P. Krugman, The Self-Organizing Economy (Blackwell, Oxford, 1996)
10.
go back to reference G.I. Barenblatt, Scaling Phenomena in Fluid Mechanics, 1st edn. (Cambridge University Press, Cambridge, 1994)MATH G.I. Barenblatt, Scaling Phenomena in Fluid Mechanics, 1st edn. (Cambridge University Press, Cambridge, 1994)MATH
11.
go back to reference O. Petruk, Approximations of the self-similar solution for blast wave in a medium with power-law density variation (Institute for Applied Problems in Mechanics and Mathematics NAS of Ukraine, Lviv, 2000) O. Petruk, Approximations of the self-similar solution for blast wave in a medium with power-law density variation (Institute for Applied Problems in Mechanics and Mathematics NAS of Ukraine, Lviv, 2000)
13.
14.
go back to reference L. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1959)MATH L. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1959)MATH
15.
go back to reference R.K. Merton, The Matthew effect in science. Science 159(3810), 56–63 (1968)CrossRef R.K. Merton, The Matthew effect in science. Science 159(3810), 56–63 (1968)CrossRef
16.
17.
go back to reference W.B. Krantz, Scaling Analysis in Modeling Transport and Reaction Processes (Wiley Interscience, Hoboken, 1939) W.B. Krantz, Scaling Analysis in Modeling Transport and Reaction Processes (Wiley Interscience, Hoboken, 1939)
20.
go back to reference G.I. Taylor, The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. Roy Soc. A 201, 159–174 (1950)CrossRefMATH G.I. Taylor, The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. Roy Soc. A 201, 159–174 (1950)CrossRefMATH
21.
go back to reference G.I. Taylor, The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy Soc. A 201, 175–186 (1950)CrossRefMATH G.I. Taylor, The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy Soc. A 201, 175–186 (1950)CrossRefMATH
22.
go back to reference C.L. Dym, Principle of Mathematical Modeling. 2nd edn, (Elsevier, 2004) C.L. Dym, Principle of Mathematical Modeling. 2nd edn, (Elsevier, 2004)
23.
go back to reference L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Pres, New York, 1959). § 61MATH L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Pres, New York, 1959). § 61MATH
24.
go back to reference R. Illner, C.S. Bohun, S. McCollum, T. Van Roode, Mathematical Modeling, A Case Studies Approach (American Mathematical Society (AMS), 2005) R. Illner, C.S. Bohun, S. McCollum, T. Van Roode, Mathematical Modeling, A Case Studies Approach (American Mathematical Society (AMS), 2005)
25.
go back to reference Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena (Dover Publication, New York, 2002) Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena (Dover Publication, New York, 2002)
26.
go back to reference G. Guderley, Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt-Forsch 19, 302–312 (1942)MathSciNetMATH G. Guderley, Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt-Forsch 19, 302–312 (1942)MathSciNetMATH
27.
go back to reference D.S. Butler, Converging spherical and cylindrical shocks. Armament Research Establishment report 54/54 (1954) D.S. Butler, Converging spherical and cylindrical shocks. Armament Research Establishment report 54/54 (1954)
28.
go back to reference J.H. Lau, M.M. Kekez, G.D. Laugheed, P. Savic, Spherically Converging Shock Waves in Dense Plasma Research, in Proceeding of 10th International Symposium on Shock Tube and Waves, 1979, p. 386 J.H. Lau, M.M. Kekez, G.D. Laugheed, P. Savic, Spherically Converging Shock Waves in Dense Plasma Research, in Proceeding of 10th International Symposium on Shock Tube and Waves, 1979, p. 386
29.
go back to reference J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Laser compression of matter to super-high densities: thermonuclear (CRT) applications. Nature 239 (1972) J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Laser compression of matter to super-high densities: thermonuclear (CRT) applications. Nature 239 (1972)
30.
go back to reference I.I. Glass, D. Sagie, Application of Explosive-Driven Implosions to Fusion. Physics of Fluids 25, 269–270 (1982)CrossRef I.I. Glass, D. Sagie, Application of Explosive-Driven Implosions to Fusion. Physics of Fluids 25, 269–270 (1982)CrossRef
31.
go back to reference F. Winterberg, The Physical Principles of Thermonuclear Explosive Devices (Fusion Energy Foundation Frontiers of Science Series, New York, 1981) F. Winterberg, The Physical Principles of Thermonuclear Explosive Devices (Fusion Energy Foundation Frontiers of Science Series, New York, 1981)
33.
go back to reference I.I. Glass, S.P. Sharma, Production of Diamonds From Graphite using Explosive-Driven Implosions. AIAA Journal 14(3), 402–404 (1976)CrossRef I.I. Glass, S.P. Sharma, Production of Diamonds From Graphite using Explosive-Driven Implosions. AIAA Journal 14(3), 402–404 (1976)CrossRef
34.
go back to reference K.P. Stanyukovich, Unsteady Motion of Continuous Media (Academic, New York, 1960) K.P. Stanyukovich, Unsteady Motion of Continuous Media (Academic, New York, 1960)
35.
go back to reference S. Ashraf, Approximate Analytic Solution of Converging Spherical and Cylindrical Shocks with Zero Temperature Gradient in the Rear Flow Field. Z. angew. Math. Phys. 6(6), 614 (1973)MATH S. Ashraf, Approximate Analytic Solution of Converging Spherical and Cylindrical Shocks with Zero Temperature Gradient in the Rear Flow Field. Z. angew. Math. Phys. 6(6), 614 (1973)MATH
38.
go back to reference V.J. Skoglund, Similitude, Theory and Applications (International Textbook Company, Scranton, 1967) V.J. Skoglund, Similitude, Theory and Applications (International Textbook Company, Scranton, 1967)
39.
go back to reference H. Schlichting, Boundary Layer Theory, 4th edn. (McGraw-Hill Book Company, New York, 1960)MATH H. Schlichting, Boundary Layer Theory, 4th edn. (McGraw-Hill Book Company, New York, 1960)MATH
40.
go back to reference G.I. Barenblatt, ‘Scaling’ Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2006) G.I. Barenblatt, ‘Scaling’ Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2006)
42.
go back to reference P.L. Sachdev, S. Ashraf, Strong shock with radiation near the surface of a star. Phys. Fluids 14, 2107 (1971)CrossRef P.L. Sachdev, S. Ashraf, Strong shock with radiation near the surface of a star. Phys. Fluids 14, 2107 (1971)CrossRef
43.
go back to reference J. von Neumann, Blast Waves Los Alamos Science Laboratory Technical Series, vol. 7 (Los Alamos, 1947). J. von Neumann, Blast Waves Los Alamos Science Laboratory Technical Series, vol. 7 (Los Alamos, 1947).
44.
go back to reference L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1969). Chap. IVMATH L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1969). Chap. IVMATH
45.
46.
go back to reference P. Best, R. Sari, Second-type self-similar solutions to the ultra-relativistic strong explosion problem. Phys. Fluids 12, 3029 (2000)CrossRefMATH P. Best, R. Sari, Second-type self-similar solutions to the ultra-relativistic strong explosion problem. Phys. Fluids 12, 3029 (2000)CrossRefMATH
47.
go back to reference R.’m. Sari, First and second type self-similar solutions of implosions and explosions containing ultra relativistic shocks. Physics of Fluids 18, 027106 (2006)MathSciNetCrossRefMATH R.’m. Sari, First and second type self-similar solutions of implosions and explosions containing ultra relativistic shocks. Physics of Fluids 18, 027106 (2006)MathSciNetCrossRefMATH
48.
go back to reference R.D. Blandford, C.F. McKee, Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130 (1976)CrossRefMATH R.D. Blandford, C.F. McKee, Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130 (1976)CrossRefMATH
Metadata
Title
Principles of the Dimensional Analysis
Author
Bahman Zohuri
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45726-0_1

Premium Partners