Abstract
Printable photovoltaic modules, along with other printed electronic devices, such as light-emitting diodes, thin-film transistors, capacitors, coils, and resistors, are a low-cost alternative to the conventionally deposited devices. Due to its fabrication simplicity and the feasibility of using large-area flexible substrates, the printable solar cell (PSC) is a prospective candidate in many application fields. Furthermore, the light-absorbing layer of PSC is usually several orders of magnitude thinner than widely used conventional Si solar cells; thus, production of PSC requires much less material, and in the case of printing deposition there is very little waste of material in comparison to other deposition methods. The possibility of using flexible large-scale substrates opens the door to multiple advanced application opportunities such as smart textiles and photovoltaic window shades. This chapter addresses a topic regarding key aspects of development, fabrication, and application with respect to PSC, mostly including solution-processed organic polymeric cells, inorganic thin-film solar cells, and organic–inorganic hybrid perovskite solar cells. Moreover, working principles, applicability of PSC, their merits and demerits, and future application possibilities are considered. Additionally, the chapter contains a description of a variety of different solution processable materials and their deposition and printing technologies.