Skip to main content
Top

2022 | OriginalPaper | Chapter

10. Printed Flexible Sensors and Sensing Systems

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Printed flexible sensors have the potential to be seamlessly applied to soft and irregularly shaped surfaces such as human skin or textile fabrics. Owing to its varied range of applications in the field of flexible and wearable electronics, soft robotics, human–machine interaction, and biomedical devices, it is required of these sensors to be flexible and stretchable conforming to the arbitrary surfaces of their soft or stiff counterparts. The challenges in maintaining the fundamental features of these sensors, such as flexibility, sensitivity, repeatability, linearity, and durability, are tackled by the progress in the fabrication techniques and customization of the material properties. As a result, materials and structures for innovative flexible sensors, as well as their integration into systems, continue to be in the spotlight of research. This chapter outlines the current state of flexible sensor technologies and the impact of material developments on this field. Special attention is given to stress, strain, temperature, chemical, electropotential, and magnetic sensors, as well as their respective applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ariga K, Makita T, Ito M, Mori T, Watanabe S, Takeya J (2019) Review of advanced sensor devices employing nanoarchitectonics concepts. Beilstein J Nanotechnol 10:2014–2030CrossRef Ariga K, Makita T, Ito M, Mori T, Watanabe S, Takeya J (2019) Review of advanced sensor devices employing nanoarchitectonics concepts. Beilstein J Nanotechnol 10:2014–2030CrossRef
go back to reference Bhatt V, Joshi S, Becherer M, Lugli P (2017) Flexible, low-cost sensor based on electrolyte gated carbon nanotube field effect transistor for organo-phosphate detection. Sensors 17:1147CrossRef Bhatt V, Joshi S, Becherer M, Lugli P (2017) Flexible, low-cost sensor based on electrolyte gated carbon nanotube field effect transistor for organo-phosphate detection. Sensors 17:1147CrossRef
go back to reference Chen B, Tang W, Jiang T et al (2018) Three-dimensional ultra-flexible triboelectric nanogenerator made by 3D printing. Nano Energy 45:380–389CrossRef Chen B, Tang W, Jiang T et al (2018) Three-dimensional ultra-flexible triboelectric nanogenerator made by 3D printing. Nano Energy 45:380–389CrossRef
go back to reference Choi KH, Khan S, Dang HW, Doh YH, Hong SJ (2010) Electrohydrodynamic spray deposition of ZnO nanoparticles. Jpn J Appl Phys 49(5S1):05EC08 Choi KH, Khan S, Dang HW, Doh YH, Hong SJ (2010) Electrohydrodynamic spray deposition of ZnO nanoparticles. Jpn J Appl Phys 49(5S1):05EC08
go back to reference Fu S, Tao J, Wu W et al (2019) Fabrication of large-area bimodal sensors by all-inkjet-printing. Adv Mater Technol 4(4):1800703CrossRef Fu S, Tao J, Wu W et al (2019) Fabrication of large-area bimodal sensors by all-inkjet-printing. Adv Mater Technol 4(4):1800703CrossRef
go back to reference Fuh YK, Wang BS, Tsai C-Y (2017) Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci Rep 7(1):6759CrossRef Fuh YK, Wang BS, Tsai C-Y (2017) Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci Rep 7(1):6759CrossRef
go back to reference Gao W, Ota H, Kiriya D, Takei K, Javey A (2019) Flexible electronics toward wearable sensing. Acc Chem Res 2019(52):523–533CrossRef Gao W, Ota H, Kiriya D, Takei K, Javey A (2019) Flexible electronics toward wearable sensing. Acc Chem Res 2019(52):523–533CrossRef
go back to reference Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC (2017) 3D printed stretchable tactile sensors. Adv Mater 29(27):1701218CrossRef Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC (2017) 3D printed stretchable tactile sensors. Adv Mater 29(27):1701218CrossRef
go back to reference Kassem O, Saadaoui M, Rieu M, Viricelle JP (2018) Fabrication of SnO2 flexible sensor by inkjet printing technology. Proceedings 2:907CrossRef Kassem O, Saadaoui M, Rieu M, Viricelle JP (2018) Fabrication of SnO2 flexible sensor by inkjet printing technology. Proceedings 2:907CrossRef
go back to reference Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3184CrossRef Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3184CrossRef
go back to reference Knobelspies S, Bierer B, Daus A, Takabayashi A, Salvatore G, Cantarella G, Perez AO, Wöllenstein J, Palzer S, Tröster G (2018) Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil. Sensors 18:358CrossRef Knobelspies S, Bierer B, Daus A, Takabayashi A, Salvatore G, Cantarella G, Perez AO, Wöllenstein J, Palzer S, Tröster G (2018) Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil. Sensors 18:358CrossRef
go back to reference Kumar KS, Chen P-Y, Ren H (2019) A review of printable flexible and stretchable tactile sensors. AAAS Res 2019:3018568, 32 p Kumar KS, Chen P-Y, Ren H (2019) A review of printable flexible and stretchable tactile sensors. AAAS Res 2019:3018568, 32 p
go back to reference Kwon SN, Kim SW, Kim IG, Hong YK, Na SI (2019) Direct 3D printing of graphene nanoplatelet/silver nanoparticle-based nanocomposites for multiaxial piezoresistive sensor applications. Adv Mater Technol 4(2):1800500 Kwon SN, Kim SW, Kim IG, Hong YK, Na SI (2019) Direct 3D printing of graphene nanoplatelet/silver nanoparticle-based nanocomposites for multiaxial piezoresistive sensor applications. Adv Mater Technol 4(2):1800500
go back to reference Liu G, Tan Q, Kou H, Zhang L, Wang J, Lv W, Dong H, Xiong JA (2018) Flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors 2018(18):1400CrossRef Liu G, Tan Q, Kou H, Zhang L, Wang J, Lv W, Dong H, Xiong JA (2018) Flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors 2018(18):1400CrossRef
go back to reference Lou Z, Wang L, Shen G (2018) Recent advances in smart wearable sensing systems. Adv Mater Technol 3:1800444CrossRef Lou Z, Wang L, Shen G (2018) Recent advances in smart wearable sensing systems. Adv Mater Technol 3:1800444CrossRef
go back to reference Münzenrieder N, Cantarella G, Vogt C, Petti L, Büthe L, Salvatore GA, Fang Y, Andri R, Lam Y, Libanori R et al (2015) Stretchable and conformable oxide thin-film electronics. Adv Electron Mater 2015(1):1400038CrossRef Münzenrieder N, Cantarella G, Vogt C, Petti L, Büthe L, Salvatore GA, Fang Y, Andri R, Lam Y, Libanori R et al (2015) Stretchable and conformable oxide thin-film electronics. Adv Electron Mater 2015(1):1400038CrossRef
go back to reference Münzenrieder N, Karnaushenko D, Petti L, Cantarella G, Vogt C, Büthe L, Karnaushenko DD, Schmidt OG, Makarov D, Tröster G (2016) Entirely flexible on-site conditioned magnetic sensorics. Adv Electron Mater 2:1600188CrossRef Münzenrieder N, Karnaushenko D, Petti L, Cantarella G, Vogt C, Büthe L, Karnaushenko DD, Schmidt OG, Makarov D, Tröster G (2016) Entirely flexible on-site conditioned magnetic sensorics. Adv Electron Mater 2:1600188CrossRef
go back to reference Muth JT, Vogt DM, Truby RL et al (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6307–6312CrossRef Muth JT, Vogt DM, Truby RL et al (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6307–6312CrossRef
go back to reference Parameswaran C, Gupta D (2019) Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano Convergence 6:28CrossRef Parameswaran C, Gupta D (2019) Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano Convergence 6:28CrossRef
go back to reference Park H, Lee S, Jeong S, Jung U, Park K, Lee M, Kim S, Lee J (2018) Enhanced moisture-reactive hydrophilic-PTFE-based flexible humidity sensor for real-time monitoring. Sensors 18:921CrossRef Park H, Lee S, Jeong S, Jung U, Park K, Lee M, Kim S, Lee J (2018) Enhanced moisture-reactive hydrophilic-PTFE-based flexible humidity sensor for real-time monitoring. Sensors 18:921CrossRef
go back to reference Peng Y, Xiao S, Yang J et al (2017) The elastic microstructures of inkjet printed polydimethylsiloxane as the patterned dielectric layer for pressure sensors. Appl Phys Lett 110(26):261904CrossRef Peng Y, Xiao S, Yang J et al (2017) The elastic microstructures of inkjet printed polydimethylsiloxane as the patterned dielectric layer for pressure sensors. Appl Phys Lett 110(26):261904CrossRef
go back to reference Pierre A, Doris SE, Lujan R, Street RA (2018) Monolithic integration of ion-selective organic electrochemical transistors with thin film transistors on flexible substrates. Adv Mater Technol 2018:1800577 Pierre A, Doris SE, Lujan R, Street RA (2018) Monolithic integration of ion-selective organic electrochemical transistors with thin film transistors on flexible substrates. Adv Mater Technol 2018:1800577
go back to reference Shih WP, Tsao LC, Lee CW, Cheng MY, Chang C, Yang YJ, Fan KC (2010) Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sensors 2010(10):3597–3610CrossRef Shih WP, Tsao LC, Lee CW, Cheng MY, Chang C, Yang YJ, Fan KC (2010) Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sensors 2010(10):3597–3610CrossRef
go back to reference Votzke C, Daalkhaijav U, Mengue Y, Johnston ML (2018) Highly-stretchable biomechanical strain sensor using printed liquid metal paste. In: 2018 IEEE biomedical circuits and systems conference (BioCAS), Cleveland, OH, USA, Oct 2018, pp 1–4 Votzke C, Daalkhaijav U, Mengue Y, Johnston ML (2018) Highly-stretchable biomechanical strain sensor using printed liquid metal paste. In: 2018 IEEE biomedical circuits and systems conference (BioCAS), Cleveland, OH, USA, Oct 2018, pp 1–4
go back to reference Wang X, Li J, Song H, Huang H, Gou J (2018) Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity. ACS Appl Mater Interfaces 10(8):7371–7380CrossRef Wang X, Li J, Song H, Huang H, Gou J (2018) Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity. ACS Appl Mater Interfaces 10(8):7371–7380CrossRef
Metadata
Title
Printed Flexible SensorsSensors and Sensing Systems
Author
Colin Tong
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-79804-8_10