Skip to main content
Top

2019 | OriginalPaper | Chapter

Priority Scheduling in the Bamboo Garden Trimming Problem

Authors : Mattia D’Emidio, Gabriele Di Stefano, Alfredo Navarra

Published in: SOFSEM 2019: Theory and Practice of Computer Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider the Bamboo Garden Trimming (BGT) problem introduced in [Gąsieniec et al., SOFSEM’17]. The problem is NP-hard due to its close relationship to Pinwheel scheduling. The garden with n bamboos is an analogue of a system of n machines which have to be attended (e.g., serviced) with different frequencies. During each day, bamboo \(b_i\) grows an extra height \(h_i,\) for \(i=1,\dots ,n\) and, on the conclusion of the day, at most one bamboo is cut all its current height. The goal is to design a perpetual schedule of cuts to keep the height of the tallest ever bamboo as low as possible.
Our contribution is twofold, and is both theoretical and experimental. In particular, we focus on understanding what we call priority schedulings, i.e. cutting strategies where priority is given to bamboos whose current height is above a threshold greater than or equal to \(H=\sum _{i=1}^n h_i\). Value H represents the total daily growth of the system and it is known that one cannot keep bamboos in the garden below this threshold indefinitely.
We prove that for any distribution of integer growth rates \(h_1,\dots ,h_n\) and any priority scheduling, the system stabilises in a fixed cycle of cuts. Then, we focus on the so-called \(\mathtt {ReduceMax}_{}\) strategy, a greedy priority scheduling which each day cuts the tallest bamboo, regardless of the growth rates distribution. \(\mathtt {ReduceMax}_{}\) is known to provide a \(O(\log n)\)-approximation, w.r.t. the lower bound H. We prove that, if \(\mathtt {ReduceMax}_{}\) stabilises in a round-robin type cycle, then it guarantees 2-approximation. We conjecture that \(\mathtt {ReduceMax}_{}\) is 2-approximating for the BGT problem, hence we conduct an extended experimental evaluation, on all bounded in size integer instances of BGT, to support our conjecture and to compare \(\mathtt {ReduceMax}_{}\) with other relevant scheduling algorithms. Our results show that \(\mathtt {ReduceMax}_{}\) provides 2-approximation in such instances, and it always outperforms other considered strategies, even those for which better worst case approximation guarantees have been proven.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alshamrani, S., Kowalski, D.R., Gąsieniec, L.: How reduce max algorithm behaves with symptoms appearance on virtual machines in clouds. In: Proceedings of the IEEE International Conference CIT/IUCC/DASC/PICOM, pp. 1703–1710 (2015) Alshamrani, S., Kowalski, D.R., Gąsieniec, L.: How reduce max algorithm behaves with symptoms appearance on virtual machines in clouds. In: Proceedings of the IEEE International Conference CIT/IUCC/DASC/PICOM, pp. 1703–1710 (2015)
2.
go back to reference Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress: a notion of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)MathSciNetCrossRef Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress: a notion of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)MathSciNetCrossRef
3.
go back to reference Baruah, S.K., Lin, S.-S.: Pfair scheduling of generalized pinwheel task systems. IEEE Trans. Comput. 47(7), 812–816 (1998)MathSciNetCrossRef Baruah, S.K., Lin, S.-S.: Pfair scheduling of generalized pinwheel task systems. IEEE Trans. Comput. 47(7), 812–816 (1998)MathSciNetCrossRef
4.
go back to reference Baruah, S., Rosier, L., Tulchinsky, I., Varvel, D.: The complexity of periodic maintenance. In: Proceedings of the 1990 International Computer Symposium, pp. 315–320 (1990) Baruah, S., Rosier, L., Tulchinsky, I., Varvel, D.: The complexity of periodic maintenance. In: Proceedings of the 1990 International Computer Symposium, pp. 315–320 (1990)
7.
go back to reference Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)CrossRef Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)CrossRef
8.
9.
go back to reference Chrobak, M., Csirik, J., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The buffer minimization problem for multiprocessor scheduling with conflicts. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–874. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_70CrossRef Chrobak, M., Csirik, J., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The buffer minimization problem for multiprocessor scheduling with conflicts. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–874. Springer, Heidelberg (2001). https://​doi.​org/​10.​1007/​3-540-48224-5_​70CrossRef
10.
go back to reference Chuangpishit, H., Czyzowicz, J., Gąsieniec, L., Georgiou, K., Jurdziński, T., Kranakis, E.: Patrolling a path connecting a set of points with unbalanced frequencies of visits. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 367–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_26CrossRef Chuangpishit, H., Czyzowicz, J., Gąsieniec, L., Georgiou, K., Jurdziński, T., Kranakis, E.: Patrolling a path connecting a set of points with unbalanced frequencies of visits. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 367–380. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-73117-9_​26CrossRef
11.
go back to reference Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, New York, USA, pp. 241–250 (2013) Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA, New York, USA, pp. 241–250 (2013)
13.
go back to reference Gąsieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_18CrossRefMATH Gąsieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-51963-0_​18CrossRefMATH
14.
go back to reference Gąsieniec, L., Klasing, R., Martin, R., Navarra, A., Zhang, X.: Fast periodic graph exploration with constant memory. J. Comput. Syst. Sci. 74(5), 802–822 (2008)MathSciNetCrossRef Gąsieniec, L., Klasing, R., Martin, R., Navarra, A., Zhang, X.: Fast periodic graph exploration with constant memory. J. Comput. Syst. Sci. 74(5), 802–822 (2008)MathSciNetCrossRef
15.
go back to reference Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time scheduling problem. In: II: Software Track, Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences, vol. 2, pp. 693–702, January 1989 Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time scheduling problem. In: II: Software Track, Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences, vol. 2, pp. 693–702, January 1989
16.
go back to reference Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two distinct numbers. Theoret. Comput. Sci. 100(1), 105–135 (1992)MathSciNetCrossRef Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two distinct numbers. Theoret. Comput. Sci. 100(1), 105–135 (1992)MathSciNetCrossRef
17.
go back to reference Hsueh, C., Lin, K.: An optimal pinwheel scheduler using the single-number reduction technique. In: Proceedings of the 17th IEEE Real-Time Systems Symposium, RTSS 1996, pp. 196–205 (1996) Hsueh, C., Lin, K.: An optimal pinwheel scheduler using the single-number reduction technique. In: Proceedings of the 17th IEEE Real-Time Systems Symposium, RTSS 1996, pp. 196–205 (1996)
18.
go back to reference Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic exploration. Algorithmica 63(1–2), 26–38 (2012)MathSciNetCrossRef Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic exploration. Algorithmica 63(1–2), 26–38 (2012)MathSciNetCrossRef
19.
go back to reference Lin, S.-S., Lin, K.-J.: A pinwheel scheduler for three distinct numbers with a tight schedulability bound. Algorithmica 19(4), 411–426 (1997)MathSciNetCrossRef Lin, S.-S., Lin, K.-J.: A pinwheel scheduler for three distinct numbers with a tight schedulability bound. Algorithmica 19(4), 411–426 (1997)MathSciNetCrossRef
20.
go back to reference Mok, A., Rosier, L., Tulchinski, I., Varvel, D.: Algorithms and complexity of the periodic maintenance problem. In: Proceedings of the 15th Symposium on Microprocessing and Microprogramming (EUROMICRO), pp. 657–664 (1989)CrossRef Mok, A., Rosier, L., Tulchinski, I., Varvel, D.: Algorithms and complexity of the periodic maintenance problem. In: Proceedings of the 15th Symposium on Microprocessing and Microprogramming (EUROMICRO), pp. 657–664 (1989)CrossRef
22.
go back to reference Romer, T.H., Rosier, L.E.: An algorithm reminiscent of euclidean-gcd for computing a function related to pinwheel scheduling. Algorithmica 17(1), 1–10 (1997)MathSciNetCrossRef Romer, T.H., Rosier, L.E.: An algorithm reminiscent of euclidean-gcd for computing a function related to pinwheel scheduling. Algorithmica 17(1), 1–10 (1997)MathSciNetCrossRef
23.
go back to reference Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. Discret. Math. 2(4), 550–581 (1989)MathSciNetCrossRef Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. Discret. Math. 2(4), 550–581 (1989)MathSciNetCrossRef
24.
go back to reference Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, vol. 1, no. 1, pp. 973–1027 (2000)CrossRef Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, vol. 1, no. 1, pp. 973–1027 (2000)CrossRef
25.
go back to reference Hardy, G.H., Ramanujan, S.: Asymptotic formulas in combinatorial analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)CrossRef Hardy, G.H., Ramanujan, S.: Asymptotic formulas in combinatorial analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)CrossRef
Metadata
Title
Priority Scheduling in the Bamboo Garden Trimming Problem
Authors
Mattia D’Emidio
Gabriele Di Stefano
Alfredo Navarra
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-10801-4_12

Premium Partner