Skip to main content
Top
Published in: Computational Mechanics 1/2014

01-07-2014 | Original Paper

Product properties of a two-phase magneto-electric composite: Synthesis and numerical modeling

Authors: Matthias Labusch, Morad Etier, Doru C. Lupascu, Jörg Schröder, Marc-André Keip

Published in: Computational Mechanics | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magneto-electric (ME) materials are of high interest for a variety of advanced applications like in data storage and sensor technology. Due to the low ME coupling in natural materials, composite structures become relevant which generate the effective ME coupling as a strain-mediated product property. In this framework, it seems to be possible to achieve effective ME coefficients that can be exploited technologically. The present contribution investigates the realization of particulate ME composites with a focus on their experimental and computational characterization. We will show that different states of pre-polarizations of the ferroelectric material have a decisive influence on the overall obtainable ME coefficient. Details on the synthesis of two-phase composite microstructures consisting of a barium titanate matrix and cobalt ferrite inclusions will be discussed. Subsequently we will employ computational homogenization in order to determine the effective properties of the experimental composite numerically. We investigate the influence of different states of pre-polarization on the resulting ME-coefficients. For the numerical incorporation of the pre-polarization we use a heuristic method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In the work [27] these parameters are given by \(\mu _{11} = - 590\,\mathrm{N}/\mathrm{kA^2}\) and \(q_{33} = +699.7\,\mathrm{N}/\mathrm{kAmm}\).
 
Literature
1.
go back to reference Bai F, Zhang H, Li J, Viehland D (2010) Magnetic and magnetoelectric properties of as deposited and annealed batio3-cofe2o4 nanocomposite thin films. J Phys D 43:509901CrossRef Bai F, Zhang H, Li J, Viehland D (2010) Magnetic and magnetoelectric properties of as deposited and annealed batio3-cofe2o4 nanocomposite thin films. J Phys D 43:509901CrossRef
2.
go back to reference Bibes M, Barthélémy A (2008) Multiferroics: towards a magnetoelectric memory. Nat Mater 7(6):425–426CrossRef Bibes M, Barthélémy A (2008) Multiferroics: towards a magnetoelectric memory. Nat Mater 7(6):425–426CrossRef
3.
go back to reference Bichurin M, Petrov V, Srinivasan G (2003) Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys Rev B 68(5):054,402CrossRef Bichurin M, Petrov V, Srinivasan G (2003) Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys Rev B 68(5):054,402CrossRef
4.
go back to reference Bichurin M, Petrov V, Averkin S, Liverts E (2010) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: Low frequency and electromechanical resonance ranges. J Appl Phys 107(5):053,904CrossRef Bichurin M, Petrov V, Averkin S, Liverts E (2010) Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: Low frequency and electromechanical resonance ranges. J Appl Phys 107(5):053,904CrossRef
5.
go back to reference Borisov P, Hochstrat A, Shvartsman V, Kleemann W (2007) Superconducting quantum interference device setup for magnetoelectric measurements. Rev Sci Instrum 78:106105–106108CrossRef Borisov P, Hochstrat A, Shvartsman V, Kleemann W (2007) Superconducting quantum interference device setup for magnetoelectric measurements. Rev Sci Instrum 78:106105–106108CrossRef
6.
go back to reference Brown WF, Hornreich R, Shtrikman S (1968) Upper bound on the magnetoelectric susceptibility. Phys Rev 168(2):574–577CrossRef Brown WF, Hornreich R, Shtrikman S (1968) Upper bound on the magnetoelectric susceptibility. Phys Rev 168(2):574–577CrossRef
7.
go back to reference Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6(1):13–20CrossRef Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6(1):13–20CrossRef
8.
go back to reference Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442(7104):759–765CrossRef Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442(7104):759–765CrossRef
9.
go back to reference Eerenstein W, Wiora M, Prieto J, Scott JF, Mathur N (2007) Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat Mater 6(5):348–351CrossRef Eerenstein W, Wiora M, Prieto J, Scott JF, Mathur N (2007) Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat Mater 6(5):348–351CrossRef
10.
go back to reference Etier M, Gao Y, Shvartsman V, Elsukova A, Landers J, Wende H, Lupascu D (2012a) Cobalt ferrite/barium titanate core/shell nanoparticles. Ferroelectrics 438:115–122CrossRef Etier M, Gao Y, Shvartsman V, Elsukova A, Landers J, Wende H, Lupascu D (2012a) Cobalt ferrite/barium titanate core/shell nanoparticles. Ferroelectrics 438:115–122CrossRef
11.
go back to reference Etier M, Gao Y, Shvartsman VV, Lupascu DC, Landers J, Wende H (2012b) Magnetoelectric properties of 0.2cofe\(_2\)o\(_4\)-0.8batio\(_3\) composite prepared by organic method. In: Proceedings of the European conference on the applications of polar dielectrics pp 1–4 Etier M, Gao Y, Shvartsman VV, Lupascu DC, Landers J, Wende H (2012b) Magnetoelectric properties of 0.2cofe\(_2\)o\(_4\)-0.8batio\(_3\) composite prepared by organic method. In: Proceedings of the European conference on the applications of polar dielectrics pp 1–4
12.
go back to reference Etier M, Shvartsman V, Stromberg F, Landers J, Wende H, Lupascu D (2012c), Synthesis and magnetic properties of cobalt ferrite nanoparticles. In: Materials Research Society symposium proceedings, vol 1398 Etier M, Shvartsman V, Stromberg F, Landers J, Wende H, Lupascu D (2012c), Synthesis and magnetic properties of cobalt ferrite nanoparticles. In: Materials Research Society symposium proceedings, vol 1398
13.
go back to reference Etier M, Shvartsman V, Gao Y, Landers J, Wende H, Lupascu D (2013) Magnetoelectric effect in (0–3) CoFe2O4-BaTiO3 (20/80) composite ceramics prepared by the organosol route. Ferroelectrics 448:77–85CrossRef Etier M, Shvartsman V, Gao Y, Landers J, Wende H, Lupascu D (2013) Magnetoelectric effect in (0–3) CoFe2O4-BaTiO3 (20/80) composite ceramics prepared by the organosol route. Ferroelectrics 448:77–85CrossRef
14.
go back to reference Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D 38(8):R123–R152CrossRef Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D 38(8):R123–R152CrossRef
15.
go back to reference Gao Y, Shvartsman V, Elsukova A, Lupascu D (2012) Low-temperature synthesis of crystalline batio3 nanoparticlesby one-step “organosol”-precipitation. J Mater Chem 22:17573–17583 Gao Y, Shvartsman V, Elsukova A, Lupascu D (2012) Low-temperature synthesis of crystalline batio3 nanoparticlesby one-step “organosol”-precipitation. J Mater Chem 22:17573–17583
16.
go back to reference Hanumaiah A, Bhimasankaram T, Suryanarayana S, Kumar G (1994) Dielectric behavior and magnetoelectric effect in cobalt ferrite-barium titanate composites. Bull Mater Sci 17:405–409CrossRef Hanumaiah A, Bhimasankaram T, Suryanarayana S, Kumar G (1994) Dielectric behavior and magnetoelectric effect in cobalt ferrite-barium titanate composites. Bull Mater Sci 17:405–409CrossRef
17.
go back to reference Harshé G, Dougherty J, Newnham RE (1993a) Theoretical modeling of 3–0/0–3 magnetoelectric composites. Int J Appl Electromagn Mater 4:161–171 Harshé G, Dougherty J, Newnham RE (1993a) Theoretical modeling of 3–0/0–3 magnetoelectric composites. Int J Appl Electromagn Mater 4:161–171
18.
go back to reference Harshé G, Dougherty J, Newnham RE (1993b) Theoretical modeling of multilayer magnetoelectric composites. Int J Appl Electromagn Mater 4:145–159 Harshé G, Dougherty J, Newnham RE (1993b) Theoretical modeling of multilayer magnetoelectric composites. Int J Appl Electromagn Mater 4:145–159
19.
go back to reference Hemeda O, Tawfik A, Amer M, Kamal B, Refaay DE (2012) Structural, spectral and dielectric properties of piezoelectric-piezomagnetic composites. J Magn Magn Mater 324:3229–3237CrossRef Hemeda O, Tawfik A, Amer M, Kamal B, Refaay DE (2012) Structural, spectral and dielectric properties of piezoelectric-piezomagnetic composites. J Magn Magn Mater 324:3229–3237CrossRef
20.
go back to reference Hill N (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694–6709CrossRef Hill N (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694–6709CrossRef
21.
go back to reference Hill R (1963) Elastic properties of reinforced solids—some theoretical principles. J Mech Phys Solids 11:357–372CrossRefMATH Hill R (1963) Elastic properties of reinforced solids—some theoretical principles. J Mech Phys Solids 11:357–372CrossRefMATH
22.
go back to reference Huang JH, Kuo WS (1997) The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J Appl Phys 81(3):1378–1386CrossRef Huang JH, Kuo WS (1997) The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J Appl Phys 81(3):1378–1386CrossRef
23.
go back to reference Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London
24.
go back to reference Jahns R, Piorra A, Lage E, Kirchhof C, Meyners D, Gugat J, Krantz M, Gerken M, Knöchel R, Quandt E (2013) Giant magnetoelectric effect in thin-film composites. J Am Ceram Soc 96:1673– 1681CrossRef Jahns R, Piorra A, Lage E, Kirchhof C, Meyners D, Gugat J, Krantz M, Gerken M, Knöchel R, Quandt E (2013) Giant magnetoelectric effect in thin-film composites. J Am Ceram Soc 96:1673– 1681CrossRef
26.
go back to reference Kinoshita K, Yamaji A (1976) Grain-size effects on dielectric properties in barium titanate ceramics. J Appl Phys 47:371–373CrossRef Kinoshita K, Yamaji A (1976) Grain-size effects on dielectric properties in barium titanate ceramics. J Appl Phys 47:371–373CrossRef
27.
go back to reference Lee JS, Boyd JG, Lagoudas DC (2005) Effective properties of three-phase electro-magneto-elastic composites. Int J EngSci 43(10):790–825CrossRefMATHMathSciNet Lee JS, Boyd JG, Lagoudas DC (2005) Effective properties of three-phase electro-magneto-elastic composites. Int J EngSci 43(10):790–825CrossRefMATHMathSciNet
30.
go back to reference Nan CW, Liu G, Lin Y, Chen H (2005), Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys Rev Lett 94(19):197,203-1-4 Nan CW, Liu G, Lin Y, Chen H (2005), Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys Rev Lett 94(19):197,203-1-4
31.
go back to reference Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103(3):031101CrossRef Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103(3):031101CrossRef
32.
go back to reference Priya S, Islam R, Dong S, Viehland D (2007) Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram 19(1):147–164 Priya S, Islam R, Dong S, Viehland D (2007) Recent advancements in magnetoelectric particulate and laminate composites. J Electroceram 19(1):147–164
33.
go back to reference Ramesh R, Spaldin N (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6(1):21–29CrossRef Ramesh R, Spaldin N (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6(1):21–29CrossRef
34.
go back to reference Rauscher M, Roosen A (2009) Effect of particle shape on anisotropic packing and shrinkage behavior of tape-cast glass-ceramic composites. Int J Appl Ceram Technol 6:24–34CrossRef Rauscher M, Roosen A (2009) Effect of particle shape on anisotropic packing and shrinkage behavior of tape-cast glass-ceramic composites. Int J Appl Ceram Technol 6:24–34CrossRef
35.
go back to reference Ryu J, Priya S, Uchino K, Kim HE (2002) Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J Electroceram 8(2):107–119CrossRef Ryu J, Priya S, Uchino K, Kim HE (2002) Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J Electroceram 8(2):107–119CrossRef
36.
go back to reference Schmid H (1994) Multi-ferroic magnetoelectrics. Ferroelectrics 162:317–338CrossRef Schmid H (1994) Multi-ferroic magnetoelectrics. Ferroelectrics 162:317–338CrossRef
37.
go back to reference Schröder J (2009) Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput Mater Sci 46(3):595–599CrossRef Schröder J (2009) Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput Mater Sci 46(3):595–599CrossRef
38.
go back to reference Schröder J, Gross D (2004) Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch Appl Mech 73:533–552CrossRefMATH Schröder J, Gross D (2004) Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch Appl Mech 73:533–552CrossRefMATH
39.
go back to reference Schröder J, Keip MA (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50:229–244CrossRefMATHMathSciNet Schröder J, Keip MA (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50:229–244CrossRefMATHMathSciNet
40.
go back to reference Schröder J, Keip MA, Labusch M (2014) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems—localization and homogenization (in preparation) Schröder J, Keip MA, Labusch M (2014) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems—localization and homogenization (in preparation)
41.
go back to reference Srinivas S, Li JY (2005) The effective magnetoelectric coefficients of polycrystalline multiferroic composites. Acta Mech 53(15):4135–4142 Srinivas S, Li JY (2005) The effective magnetoelectric coefficients of polycrystalline multiferroic composites. Acta Mech 53(15):4135–4142
42.
go back to reference Srinivas S, Li JY, Zhou YC, Soh AK (2006) The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J Appl Phys 99(4):043,905CrossRef Srinivas S, Li JY, Zhou YC, Soh AK (2006) The effective magnetoelectroelastic moduli of matrix-based multiferroic composites. J Appl Phys 99(4):043,905CrossRef
43.
go back to reference Srinivasan G (2010) Magnetoelectric composites. Annu Rev Mater Res 40:1–26CrossRef Srinivasan G (2010) Magnetoelectric composites. Annu Rev Mater Res 40:1–26CrossRef
44.
go back to reference van Suchtelen J (1972) Product properties: a new application of composite materials. Philips Res Rep 27:28–37 van Suchtelen J (1972) Product properties: a new application of composite materials. Philips Res Rep 27:28–37
45.
go back to reference Wang T, Wang X, Yao G, Zhang Y, Liao X, Yang G, Song TH, Li L (2008) Effects of processing on microstructure and dielectric properties of ultrafine-grained barium titanate based ceramics for bme-mlcc applications. Key Eng Mater 368–372:43–46CrossRef Wang T, Wang X, Yao G, Zhang Y, Liao X, Yang G, Song TH, Li L (2008) Effects of processing on microstructure and dielectric properties of ultrafine-grained barium titanate based ceramics for bme-mlcc applications. Key Eng Mater 368–372:43–46CrossRef
46.
go back to reference Wang Y, Hu J, Lin Y, Nan CW (2010) Multiferroic magnetoelectric composite nanostructures. Nat Asia-Pac Asia Mater 2:61–68 Wang Y, Hu J, Lin Y, Nan CW (2010) Multiferroic magnetoelectric composite nanostructures. Nat Asia-Pac Asia Mater 2:61–68
47.
go back to reference Waser R, Baiatu T, Härdtl KH (1990) dc electrical degradation of perovskite-type titanates. J Am Ceram Soc 73:1645–1653CrossRef Waser R, Baiatu T, Härdtl KH (1990) dc electrical degradation of perovskite-type titanates. J Am Ceram Soc 73:1645–1653CrossRef
48.
go back to reference Zohdi T (2010) Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput Methods Appl Mech Eng 199:3250–3269CrossRefMATHMathSciNet Zohdi T (2010) Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput Methods Appl Mech Eng 199:3250–3269CrossRefMATHMathSciNet
49.
go back to reference Zohdi T (2012) Electromagnetic properties of multiphase dielectrics. Springer, BerlinCrossRef Zohdi T (2012) Electromagnetic properties of multiphase dielectrics. Springer, BerlinCrossRef
Metadata
Title
Product properties of a two-phase magneto-electric composite: Synthesis and numerical modeling
Authors
Matthias Labusch
Morad Etier
Doru C. Lupascu
Jörg Schröder
Marc-André Keip
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 1/2014
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1031-3

Other articles of this Issue 1/2014

Computational Mechanics 1/2014 Go to the issue