Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 3/2021

03-01-2021 | Research Article-Mechanical Engineering

Production and Characterization of Ceramic Bushings from Alumina-Toughened Yttrium-Stabilized Tetragonal Zirconia Composites for Projection Welding Applications

Author: Arife Yurdakul

Published in: Arabian Journal for Science and Engineering | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In current study, for the first time, it was aimed to produce the ceramic bushings for use of projection bolt welding process in automotive industry. Here, they were manufactured from ready-to-press binder containing granulated alumina-toughened zirconia (ATZ) powders consisted of 20 wt.% alumina (α-Al2O3) and 3 mol.% yttria-stabilized tetragonal zirconia polycrystalline components. The ATZ ceramic bushings were densified by pressureless sintering between 1500 and 1600 °C with 25 °C increments for 2 h under air atmosphere. Physical, mechanical, tribological and microstructural properties of ATZ composites were characterized by different tests, analyses and techniques, i.e., Archimedes’ principle, Vickers hardness (HV), indentation fracture toughness (KIc), specific wear rate (W), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. Considering overall results, ATZ ceramic bushings were successfully sintered up to 99% of theoretical density by increasing sintering temperature. The maximum HV and KIc values of ATZ composites were determined as 14.62 ± 0.02 GPa at 1500 °C and 6.10 ± 0.04 MPa m1/2 at 1600 °C, respectively. XRD patterns revealed that ATZ composites comprised of primary t-ZrO2 and secondary α-Al2O3 phases with no traces of m-ZrO2 and c-ZrO2. SEM observations showed the homogenous microstructures with high densification including no porosity; however, a slight degree of normal grain growth for t-ZrO2 and α-Al2O3 grains. ATZ ceramic bushings also exhibited high wear resistant property with W = 4.71 × 10−9 m3 N−1 m−1 value. They welded over the 500.000 ± 2.000 bolts to metal sheets in the automatic projection welding machines. This makes the ATZ composites a superior material for projection bolt welding process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference De Aza, A.H.; Chevalier, J.; Fantozzi, G.; Schehl, M.; Torrecillas, R.: Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23, 937–945 (2002) De Aza, A.H.; Chevalier, J.; Fantozzi, G.; Schehl, M.; Torrecillas, R.: Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23, 937–945 (2002)
2.
go back to reference Piconi, C.; Maccauro, G.; Muratori, F.; Brach Del Prever, E.: Alumina and zirconia ceramics in joint replacements. J. Appl. Biomater. Biomech. 1, 19–32 (2003) Piconi, C.; Maccauro, G.; Muratori, F.; Brach Del Prever, E.: Alumina and zirconia ceramics in joint replacements. J. Appl. Biomater. Biomech. 1, 19–32 (2003)
3.
go back to reference Liu, C.; Sun, J.; Li, G.; Li, B.; Gong, F.: Fabrication, mechanical properties and fracture behaviors of the laminated Al2O3–ZrB2–MgO/Al2O3–TiN–MgO ceramic composite. Ceram. Int. 46, 857–865 (2020) Liu, C.; Sun, J.; Li, G.; Li, B.; Gong, F.: Fabrication, mechanical properties and fracture behaviors of the laminated Al2O3–ZrB2–MgO/Al2O3–TiN–MgO ceramic composite. Ceram. Int. 46, 857–865 (2020)
4.
go back to reference Alvar, F.S.; Heydari, M.; Kazemzadeh, A.; Vaezi, M.R.; Nikzad, L.: Synthesis and characterization of corrosion-resistant and biocompatible Al2O3–TiB2 nanocomposite films on pure titanium. Ceram. Int. 46, 4215–4221 (2020) Alvar, F.S.; Heydari, M.; Kazemzadeh, A.; Vaezi, M.R.; Nikzad, L.: Synthesis and characterization of corrosion-resistant and biocompatible Al2O3–TiB2 nanocomposite films on pure titanium. Ceram. Int. 46, 4215–4221 (2020)
5.
go back to reference Rocha-Rangel, E.; Refugio-García, E.; Miranda-Hernández, J.G.; Terrés-Rojas, E.: Fracture toughness enhancement for metal-reinforced alumina. J. Ceram. Process. Res. 10, 744–747 (2009) Rocha-Rangel, E.; Refugio-García, E.; Miranda-Hernández, J.G.; Terrés-Rojas, E.: Fracture toughness enhancement for metal-reinforced alumina. J. Ceram. Process. Res. 10, 744–747 (2009)
6.
go back to reference Garvie, R.C.; Hannink, R.H.; Pascoe, R.T.: Ceramic steel? Nature 258, 703–704 (1975) Garvie, R.C.; Hannink, R.H.; Pascoe, R.T.: Ceramic steel? Nature 258, 703–704 (1975)
7.
go back to reference Kelly, J.R.; Denry, I.: Stabilized zirconia as a structural ceramic: an overview. Dent. Mater. 24, 289–298 (2008) Kelly, J.R.; Denry, I.: Stabilized zirconia as a structural ceramic: an overview. Dent. Mater. 24, 289–298 (2008)
8.
go back to reference Tanaka, S.; Takaba, M.; Ishiura, Y.; Kamimura, E.; Baba, K.: A 3-year follow up of ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) frameworks for fixed dental prostheses. J. Prosthodont. Res. 59, 55–61 (2015) Tanaka, S.; Takaba, M.; Ishiura, Y.; Kamimura, E.; Baba, K.: A 3-year follow up of ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) frameworks for fixed dental prostheses. J. Prosthodont. Res. 59, 55–61 (2015)
9.
go back to reference Banik, S.R.; Iqbal, I.M.; Nath, R.; Bora, L.J.; Singh, B.K.; Mandal, N.; Sankar, M.R.: State of the art on zirconia toughened alumina cutting tools. Mater. Today Proc. 18, 2632–2641 (2019) Banik, S.R.; Iqbal, I.M.; Nath, R.; Bora, L.J.; Singh, B.K.; Mandal, N.; Sankar, M.R.: State of the art on zirconia toughened alumina cutting tools. Mater. Today Proc. 18, 2632–2641 (2019)
10.
go back to reference Cousland, G.P.; Cui, X.Y.; Smith, A.E.; Stampfl, A.P.J.; Stampfl, C.M.: Mechanical properties of zirconia, doped and undoped yttria-stabilized cubic zirconia from first-principles. J. Phys. Chem. Solids 122, 51–71 (2018) Cousland, G.P.; Cui, X.Y.; Smith, A.E.; Stampfl, A.P.J.; Stampfl, C.M.: Mechanical properties of zirconia, doped and undoped yttria-stabilized cubic zirconia from first-principles. J. Phys. Chem. Solids 122, 51–71 (2018)
12.
go back to reference Sharma, A.; Ahn, B.: Effect of MgO addition on the monoclinic to tetragonal transition of ZrO2 fabricated by high energy ball milling. Korean J. Met. Mater. 56, 718–726 (2018) Sharma, A.; Ahn, B.: Effect of MgO addition on the monoclinic to tetragonal transition of ZrO2 fabricated by high energy ball milling. Korean J. Met. Mater. 56, 718–726 (2018)
13.
go back to reference Jin, X.J.: Martensitic transformation in zirconia containing ceramics and its applications. Curr. Opin. Solid State Mater. Sci. 9, 313–318 (2005) Jin, X.J.: Martensitic transformation in zirconia containing ceramics and its applications. Curr. Opin. Solid State Mater. Sci. 9, 313–318 (2005)
14.
go back to reference Basu, B.: Toughening of yttria-stabilised tetragonal zirconia ceramics. Int. Mater. Rev. 50, 239–256 (2005) Basu, B.: Toughening of yttria-stabilised tetragonal zirconia ceramics. Int. Mater. Rev. 50, 239–256 (2005)
15.
go back to reference Sun, Y.H.; Zhang, Y.F.; Guo, J.K.: Microstructure and bending strength of 3Y-TZP ceramics by liquid-phase sintering with CAS addition. Ceram. Int. 29, 229–232 (2003) Sun, Y.H.; Zhang, Y.F.; Guo, J.K.: Microstructure and bending strength of 3Y-TZP ceramics by liquid-phase sintering with CAS addition. Ceram. Int. 29, 229–232 (2003)
16.
go back to reference Ersoy, N.M.; Aydoğdu, H.M.; Değirmenci, B.Ü.; Çökük, N.; Sevimay, M.: The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomater. Odontol. Scand. 1, 43–50 (2015) Ersoy, N.M.; Aydoğdu, H.M.; Değirmenci, B.Ü.; Çökük, N.; Sevimay, M.: The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomater. Odontol. Scand. 1, 43–50 (2015)
17.
go back to reference Kontonasaki, E.; Giasimakopoulos, P.; Rigos, A.E.: Strength and aging resistance of monolithic zirconia: an update to current knowledge. Jpn. Dent. Sci. Rev. 56, 1–23 (2020) Kontonasaki, E.; Giasimakopoulos, P.; Rigos, A.E.: Strength and aging resistance of monolithic zirconia: an update to current knowledge. Jpn. Dent. Sci. Rev. 56, 1–23 (2020)
18.
go back to reference Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C.: Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83, 461–487 (2000) Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C.: Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83, 461–487 (2000)
19.
go back to reference Tanaka, H.; Maeda, T.; Narikiyo, H.; Morimoto, T.: Mechanical properties of partially stabilized zirconia for dental applications. J. Asian Ceram. Soc. 7, 460–468 (2019) Tanaka, H.; Maeda, T.; Narikiyo, H.; Morimoto, T.: Mechanical properties of partially stabilized zirconia for dental applications. J. Asian Ceram. Soc. 7, 460–468 (2019)
20.
go back to reference Koncar, V.: Composites and hybrid structures. In: The Textile Institute Book Series, pp. 153–215. Elsevier, Woodhead Publishing (2019) Koncar, V.: Composites and hybrid structures. In: The Textile Institute Book Series, pp. 153–215. Elsevier, Woodhead Publishing (2019)
21.
go back to reference Gil-Flores, L.; Salvador, M.D.; Penaranda-Foix, F.L.; Dalmau, A.; Fernández, A.; Borrell, A.: Tribological and wear behaviour of alumina toughened zirconia nanocomposites obtained by pressureless rapid microwave sintering. J. Mech. Behav. Biomed. Mater. 101, 103415 (2020) Gil-Flores, L.; Salvador, M.D.; Penaranda-Foix, F.L.; Dalmau, A.; Fernández, A.; Borrell, A.: Tribological and wear behaviour of alumina toughened zirconia nanocomposites obtained by pressureless rapid microwave sintering. J. Mech. Behav. Biomed. Mater. 101, 103415 (2020)
22.
go back to reference Maji, A.; Choubey, G.: Microstructure and mechanical properties of alumina toughened zirconia (ATZ). Mater. Today Proc. 5, 7457–7465 (2018) Maji, A.; Choubey, G.: Microstructure and mechanical properties of alumina toughened zirconia (ATZ). Mater. Today Proc. 5, 7457–7465 (2018)
23.
go back to reference Sequeira, S.; Fernandes, M.H.; Neves, N.; Almeida, M.M.: Development and characterization of zirconia–alumina composites for orthopedic implants. Ceram. Int. 43, 693–703 (2017) Sequeira, S.; Fernandes, M.H.; Neves, N.; Almeida, M.M.: Development and characterization of zirconia–alumina composites for orthopedic implants. Ceram. Int. 43, 693–703 (2017)
24.
go back to reference Pabst, W.; Havrda, J.; Gregorova, E.; Kromova, B.: Alumina toughened zirconia made by room temperature extrusion of ceramic pastes. Ceram. Silik. 44, 41–47 (2000) Pabst, W.; Havrda, J.; Gregorova, E.; Kromova, B.: Alumina toughened zirconia made by room temperature extrusion of ceramic pastes. Ceram. Silik. 44, 41–47 (2000)
25.
go back to reference Meena, K.L.; Karunakar, D.B.: Development of alumina toughened zirconia nanocomposites using spark plasma sintering. Mater. Today Proc. 5, 16928–16935 (2018) Meena, K.L.; Karunakar, D.B.: Development of alumina toughened zirconia nanocomposites using spark plasma sintering. Mater. Today Proc. 5, 16928–16935 (2018)
26.
go back to reference Moraes, M.C.; Elias, C.N.; Duailibi Filho, J.; Oliveira, L.G.: Mechanical properties of alumina-zirconia composites for ceramic abutments. Mater. Res. 7, 643–649 (2004) Moraes, M.C.; Elias, C.N.; Duailibi Filho, J.; Oliveira, L.G.: Mechanical properties of alumina-zirconia composites for ceramic abutments. Mater. Res. 7, 643–649 (2004)
27.
go back to reference Nevarez-Rascon, A.; Aguilar-Elguezabal, A.; Orrantia, E.; Bocanegra-Bernal, M.H.: On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content. Int. J. Refract. Met. Hard Mater. 27, 962–970 (2009) Nevarez-Rascon, A.; Aguilar-Elguezabal, A.; Orrantia, E.; Bocanegra-Bernal, M.H.: On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content. Int. J. Refract. Met. Hard Mater. 27, 962–970 (2009)
28.
go back to reference Fang, Z.Z.; Wang, H.: Densification and grain growth during sintering of nanosized particles. Int. Mater. Rev. 53, 326–352 (2008) Fang, Z.Z.; Wang, H.: Densification and grain growth during sintering of nanosized particles. Int. Mater. Rev. 53, 326–352 (2008)
29.
go back to reference Selcuk, C.: Joining processes for powder metallurgy parts. In: Chang, I., Zhao, Y. (eds.) Advances in Powder Metallurgy Properties, Processing and Applications, pp. 380–398. Woodhead Publishing Series in Metals and Surface Engineering, Cambridge (2013) Selcuk, C.: Joining processes for powder metallurgy parts. In: Chang, I., Zhao, Y. (eds.) Advances in Powder Metallurgy Properties, Processing and Applications, pp. 380–398. Woodhead Publishing Series in Metals and Surface Engineering, Cambridge (2013)
30.
go back to reference Lucas, W.; Westgate, S.: Welding and soldering. In: Laughton, M.A., Warne, D.F. (eds.) Electrical Engineer’s Reference Book, pp. 10-1–10-3-10-51. Elsevier, Amsterdam (2003) Lucas, W.; Westgate, S.: Welding and soldering. In: Laughton, M.A., Warne, D.F. (eds.) Electrical Engineer’s Reference Book, pp. 10-1–10-3-10-51. Elsevier, Amsterdam (2003)
31.
go back to reference Wampers, H.: High-performance ceramics for welding technology. Ceram. Forum Int. 85, E40–E42+D25–D27 (2008) Wampers, H.: High-performance ceramics for welding technology. Ceram. Forum Int. 85, E40–E42+D25–D27 (2008)
32.
go back to reference Krstic, V.: inventor: Method of making high toughness high strength zirconia bodies. United States patent US 0011661A1 (2014) Krstic, V.: inventor: Method of making high toughness high strength zirconia bodies. United States patent US 0011661A1 (2014)
33.
go back to reference Millan, R.T.S., Rodriguez, L.A.D.: inventor: Consejo Superior De Investigaciones Cientificas (CSIC), assignee. Nanostructured composite material of stabilized zirconia with cerium oxide and doped alumina with zirconia, use and procedure for obtaining same. United States patent US 8,546,285 B2 (2013) Millan, R.T.S., Rodriguez, L.A.D.: inventor: Consejo Superior De Investigaciones Cientificas (CSIC), assignee. Nanostructured composite material of stabilized zirconia with cerium oxide and doped alumina with zirconia, use and procedure for obtaining same. United States patent US 8,546,285 B2 (2013)
34.
go back to reference Wojteczko, A.; Wiązania, G.; Kot, M.; Pędzich, Z.: Friction and wear of composites in alumina/zirconia system. Compos. Theory Pract. 18, 51–56 (2018) Wojteczko, A.; Wiązania, G.; Kot, M.; Pędzich, Z.: Friction and wear of composites in alumina/zirconia system. Compos. Theory Pract. 18, 51–56 (2018)
35.
go back to reference Wiazania, G.; Kot, M.; Wojteczko, A.; Pędzich, Z.: Tribological propertıes of Al2O3/ZrO2 sintered ceramics. Tribologia 1, 67–72 (2019) Wiazania, G.; Kot, M.; Wojteczko, A.; Pędzich, Z.: Tribological propertıes of Al2O3/ZrO2 sintered ceramics. Tribologia 1, 67–72 (2019)
36.
go back to reference Rezaee, S.; Ranjbar, K.; Kiasat, A.R.: Characterization and strengthening of porous alumina-20 wt% zirconia ceramic composites. Ceram. Int. 46, 893–902 (2020) Rezaee, S.; Ranjbar, K.; Kiasat, A.R.: Characterization and strengthening of porous alumina-20 wt% zirconia ceramic composites. Ceram. Int. 46, 893–902 (2020)
37.
go back to reference Gibson, R.F.: Principles of Composite Material Mechanics. CRC Press, Boca Raton (2012) Gibson, R.F.: Principles of Composite Material Mechanics. CRC Press, Boca Raton (2012)
38.
go back to reference Tam, D.K.Y.; Ruan, S.; Gao, P.; Yu, T.: High-performance ballistic protection using polymer nanocomposites. In: Sparks, E. (ed.) Advances in Military Textiles and Personal Equipment, pp. 213–237. Woodhead Publishing Limited, Cambridge (2012) Tam, D.K.Y.; Ruan, S.; Gao, P.; Yu, T.: High-performance ballistic protection using polymer nanocomposites. In: Sparks, E. (ed.) Advances in Military Textiles and Personal Equipment, pp. 213–237. Woodhead Publishing Limited, Cambridge (2012)
39.
go back to reference Suprapedi, S.; Muljadi, M.; Sardjono, P.: The characterization of ceramic alumina prepared by using additive glass beads. IOP Conf. Ser. Mater. Sci. Eng. 299, 012043 (2018) Suprapedi, S.; Muljadi, M.; Sardjono, P.: The characterization of ceramic alumina prepared by using additive glass beads. IOP Conf. Ser. Mater. Sci. Eng. 299, 012043 (2018)
40.
go back to reference Ghouli, S.; Ayatollahi, M.R.; Bushroa, A.R.: Fracture characterization of ceria partially stabilized zirconia using the GMTSN criterion. Eng. Fract. Mech. 199, 647–657 (2018) Ghouli, S.; Ayatollahi, M.R.; Bushroa, A.R.: Fracture characterization of ceria partially stabilized zirconia using the GMTSN criterion. Eng. Fract. Mech. 199, 647–657 (2018)
41.
go back to reference Niihara, K.; Morena, R.; Hasselman, D.P.H.: Evaluation of Kıc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13–16 (1982) Niihara, K.; Morena, R.; Hasselman, D.P.H.: Evaluation of Kıc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13–16 (1982)
42.
go back to reference Niihara, K.; Morena, R.; Hasselman, D.P.H.: Fracture Mechanics of Ceramics. Plenum Press, New York (1983) Niihara, K.; Morena, R.; Hasselman, D.P.H.: Fracture Mechanics of Ceramics. Plenum Press, New York (1983)
43.
go back to reference Cottom, B.A.; Mayo, M.J.: Fracture toughness of nanocrystalline ZrO2–3 mol% Y2O3 determined by Vickers indentation. Scr. Mater. 34, 809–814 (1996) Cottom, B.A.; Mayo, M.J.: Fracture toughness of nanocrystalline ZrO2–3 mol% Y2O3 determined by Vickers indentation. Scr. Mater. 34, 809–814 (1996)
44.
go back to reference Kaliszewski, M.S.; Behrens, G.; Heuer, A.H.; Shaw, M.C.; Marshall, D.B.; Dransmanri, G.W.; Steinbrech, R.W.; Pajares, A.; Guiberteau, F.: Indentation studies on Y2O2-stabilized ZrO2: I, Development of indentation-induced cracks. J. Am. Ceram. Soc. 77, 1185–1193 (1994) Kaliszewski, M.S.; Behrens, G.; Heuer, A.H.; Shaw, M.C.; Marshall, D.B.; Dransmanri, G.W.; Steinbrech, R.W.; Pajares, A.; Guiberteau, F.: Indentation studies on Y2O2-stabilized ZrO2: I, Development of indentation-induced cracks. J. Am. Ceram. Soc. 77, 1185–1193 (1994)
45.
go back to reference Pabst, W.; Gregorova, E.: Ceramics and Composite Materials: New Research. Nova Publishers, New York (2006) Pabst, W.; Gregorova, E.: Ceramics and Composite Materials: New Research. Nova Publishers, New York (2006)
46.
go back to reference Pabst, W.; Ticha, G.; Gregorova, E.: Effective elastic properites of alumina-zirconia composite ceramics—part 3. Calculation of elastic moduli of polycrystalline alumina and zirconia from monocrystal data. Ceram. Silik. 48, 41–48 (2004) Pabst, W.; Ticha, G.; Gregorova, E.: Effective elastic properites of alumina-zirconia composite ceramics—part 3. Calculation of elastic moduli of polycrystalline alumina and zirconia from monocrystal data. Ceram. Silik. 48, 41–48 (2004)
47.
go back to reference Hutchings, I.; Gee, M.; Santner, E.: Friction and wear. In: Czichos, H., Saito, T., Smith, L. (eds.) Springer Handbook of Materials Measurement Methods, pp. 685–710. Springer, Berlin (2006) Hutchings, I.; Gee, M.; Santner, E.: Friction and wear. In: Czichos, H., Saito, T., Smith, L. (eds.) Springer Handbook of Materials Measurement Methods, pp. 685–710. Springer, Berlin (2006)
48.
go back to reference Phifer, D.; Tuma, L.; Vystavel, T.; Wandrol, P.; Young, R.J.: Improving SEM imaging performance using beam deceleration. Microsc. Today 17, 40–49 (2009) Phifer, D.; Tuma, L.; Vystavel, T.; Wandrol, P.; Young, R.J.: Improving SEM imaging performance using beam deceleration. Microsc. Today 17, 40–49 (2009)
50.
go back to reference Fan, J.; Lin, T.; Hu, F.; Yu, Y.; Ibrahim, M.; Zheng, R.; Huang, S.; Ma, J.: Effect of sintering temperature on microstructure and mechanical properties of zirconia-toughened alümina machinable dental ceramics. Ceram. Int. 43, 3647–3653 (2017) Fan, J.; Lin, T.; Hu, F.; Yu, Y.; Ibrahim, M.; Zheng, R.; Huang, S.; Ma, J.: Effect of sintering temperature on microstructure and mechanical properties of zirconia-toughened alümina machinable dental ceramics. Ceram. Int. 43, 3647–3653 (2017)
51.
go back to reference Rector, S.G.; Blanton, T.: The powder diffraction file: a quality materials characterization database. Powder Diffr. 34, 352–360 (2019) Rector, S.G.; Blanton, T.: The powder diffraction file: a quality materials characterization database. Powder Diffr. 34, 352–360 (2019)
52.
go back to reference Witz, G.; Shklover, V.; Steure, W.; Bachegowda, S.; Bossmann, H.P.: Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by Rietveld refinement of X-ray powder diffraction patterns. J. Am. Ceram. Soc. 90, 2935–2940 (2007) Witz, G.; Shklover, V.; Steure, W.; Bachegowda, S.; Bossmann, H.P.: Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by Rietveld refinement of X-ray powder diffraction patterns. J. Am. Ceram. Soc. 90, 2935–2940 (2007)
53.
go back to reference Hall, E.O.: The deformation and ageing of mild steel. 3: discussion of results. Proc. Phys. Soc. Lond. B 64, 747–753 (1951) Hall, E.O.: The deformation and ageing of mild steel. 3: discussion of results. Proc. Phys. Soc. Lond. B 64, 747–753 (1951)
54.
go back to reference Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953) Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)
57.
go back to reference Meena, K.L.; Vidyasagar, C.S.; Karunakar, D.B.: Mechanical and tribological properties of alumina toughened zirconia composites through conventional sintering and microwave sintering. Trans. Indian Inst. Met. 73, 1909–1923 (2020) Meena, K.L.; Vidyasagar, C.S.; Karunakar, D.B.: Mechanical and tribological properties of alumina toughened zirconia composites through conventional sintering and microwave sintering. Trans. Indian Inst. Met. 73, 1909–1923 (2020)
Metadata
Title
Production and Characterization of Ceramic Bushings from Alumina-Toughened Yttrium-Stabilized Tetragonal Zirconia Composites for Projection Welding Applications
Author
Arife Yurdakul
Publication date
03-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 3/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05160-8

Other articles of this Issue 3/2021

Arabian Journal for Science and Engineering 3/2021 Go to the issue

Premium Partners