Skip to main content
Top
Published in: Journal of Materials Science 20/2018

02-07-2018 | Composites

Production and characterization of sustainable poly(lactic acid)/functionalized-eggshell composites plasticized by epoxidized soybean oil

Authors: Junjun Kong, Changyu Han, Yancun Yu, Lisong Dong

Published in: Journal of Materials Science | Issue 20/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To improve the intrinsic brittleness and crystallization capacity of poly(lactic acid) (PLA), fully sustainable PLA composites were prepared. The biodegradable PLA composites consisted of 10 wt% epoxidized soybean oil (ESO) and different amounts of functional eggshell (FES) with surface modified with calcium phenylphosphonate (PPCa) were prepared by melt blending. Mechanical and crystallization behavior were studied in terms of the weight percentage of FES. ESO-plasticized PLA showed an excellent tensile toughness with the elongation at break increased over than 160% compared to 6% of pure PLA. The elongation at break for PLA composites was still higher than 70% even filled with 30 wt% FES. Besides, the tensile and storage moduli of PLA/ESO/FES composites did not suffer significant deterioration as compared with pure PLA. For cold crystallization behavior, FES with surface modified by PPCa as a good nucleating agent improved the nucleating ability of PLA. The rates of nonisothermal and isothermal cold crystallization of PLA were improved due to the synergistic effect of plasticization and nucleation. The nonisothermal cold crystallization peak temperature (Tcc) of PLA composites decreases considerably from 118.7 °C (for pure PLA) to 90 °C. The crystallization half-time of PLA composites is lower than 10 min compared with 162 min of pure PLA after isothermal crystallized at 75 °C. As a consequence, it is encouraging that ESO and FES exhibit great viability for modifying the mechanical and crystallization properties of PLA matrix, which make PLA a promising sustainable alternative to petroleum-based polymers in conventional fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li YD, Fu QQ, Wang M, Zeng JB (2017) Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr Polym 164:75–82CrossRef Li YD, Fu QQ, Wang M, Zeng JB (2017) Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr Polym 164:75–82CrossRef
2.
go back to reference Ma XF, Yu JG, Wang N (2006) Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J Polym Sci Part B Polym Phys 44(1):94–101CrossRef Ma XF, Yu JG, Wang N (2006) Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J Polym Sci Part B Polym Phys 44(1):94–101CrossRef
3.
go back to reference Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRef Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRef
4.
go back to reference Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542CrossRef Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542CrossRef
5.
go back to reference Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Ind Crops Prod 111:878–888CrossRef Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Ind Crops Prod 111:878–888CrossRef
7.
go back to reference Orue A, Eceiza A, Arbelaiz A (2018) Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Ind Crops Prod 112:170–180CrossRef Orue A, Eceiza A, Arbelaiz A (2018) Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Ind Crops Prod 112:170–180CrossRef
8.
go back to reference Fang H, Xie Q, Wei H, Xu P, Ding Y (2017) Physical gelation and macromolecular mobility of sustainable polylactide during isothermal crystallization. J Polym Sci Part B Polym Phys 55(16):1235–1244CrossRef Fang H, Xie Q, Wei H, Xu P, Ding Y (2017) Physical gelation and macromolecular mobility of sustainable polylactide during isothermal crystallization. J Polym Sci Part B Polym Phys 55(16):1235–1244CrossRef
9.
go back to reference Zhang JM, Duan YX, Sato H, Tsuji H, Noda I, Yan SK, Ozaki AY (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021CrossRef Zhang JM, Duan YX, Sato H, Tsuji H, Noda I, Yan SK, Ozaki AY (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021CrossRef
10.
go back to reference Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255CrossRef Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255CrossRef
11.
go back to reference Li HB, Huneault AM (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866CrossRef Li HB, Huneault AM (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866CrossRef
12.
go back to reference Anderson SK, Hillmyer AM (2006) Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47:2030–2035CrossRef Anderson SK, Hillmyer AM (2006) Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47:2030–2035CrossRef
13.
go back to reference He Y, Xu Y, Wei J, Fan Z, Li S (2008) Unique crystallization behavior of PLLA-PDLA stereocomplex depending on initial melt states. Polymer 49:5670–5675CrossRef He Y, Xu Y, Wei J, Fan Z, Li S (2008) Unique crystallization behavior of PLLA-PDLA stereocomplex depending on initial melt states. Polymer 49:5670–5675CrossRef
14.
go back to reference Bai H, Liu H, Bai D, Zhang Q, Wang K, Deng H, Chen F, Fu Q (2014) Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polym Chem 5(20):5985–5993CrossRef Bai H, Liu H, Bai D, Zhang Q, Wang K, Deng H, Chen F, Fu Q (2014) Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polym Chem 5(20):5985–5993CrossRef
15.
go back to reference Zhao H, Bian Y, Li Y, Dong Q, Han C, Dong L (2014) Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J Mater Chem A 2(23):8881–8892CrossRef Zhao H, Bian Y, Li Y, Dong Q, Han C, Dong L (2014) Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J Mater Chem A 2(23):8881–8892CrossRef
16.
go back to reference Tan BH, Muiruri JK, Li Z, He C (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4(10):5370–5391CrossRef Tan BH, Muiruri JK, Li Z, He C (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4(10):5370–5391CrossRef
17.
go back to reference Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1(2):402–411CrossRef Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1(2):402–411CrossRef
18.
go back to reference Zhang R, Russo PA, Feist M, Amsalem P, Koch N, Pinna N (2017) Synthesis of nickel phosphide electrocatalysts from hybrid metal phosphonates. ACS Appl Mater Interfaces 9(16):14013–14022CrossRef Zhang R, Russo PA, Feist M, Amsalem P, Koch N, Pinna N (2017) Synthesis of nickel phosphide electrocatalysts from hybrid metal phosphonates. ACS Appl Mater Interfaces 9(16):14013–14022CrossRef
19.
go back to reference Wang S, Han C, Bian J, Han L, Wang X, Dong L (2011) Morphology, crystallization and enzymatic hydrolysis of poly(l-lactide) nucleated using layered metal phosphonates. Polym Int 60(2):284–295CrossRef Wang S, Han C, Bian J, Han L, Wang X, Dong L (2011) Morphology, crystallization and enzymatic hydrolysis of poly(l-lactide) nucleated using layered metal phosphonates. Polym Int 60(2):284–295CrossRef
20.
go back to reference Kong J, Li Y, Bai Y, Li Z, Cao Z, Yu Y, Han C, Dong L (2018) High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder. Int J Biol Macromol 112:46–53CrossRef Kong J, Li Y, Bai Y, Li Z, Cao Z, Yu Y, Han C, Dong L (2018) High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder. Int J Biol Macromol 112:46–53CrossRef
21.
go back to reference Toro P, Quijada R, Yazdani-Pedram M, Arias JL (2007) Eggshell, a new bio-filler for polypropylene composites. Mater Lett 61(22):4347–4350CrossRef Toro P, Quijada R, Yazdani-Pedram M, Arias JL (2007) Eggshell, a new bio-filler for polypropylene composites. Mater Lett 61(22):4347–4350CrossRef
22.
go back to reference Li Y, Xin S, Bian Y, Xu K, Han C, Dong L (2016) The physical properties of poly(l-lactide) and functionalized eggshell powder composites. Int J Biol Macromol 85:63–73CrossRef Li Y, Xin S, Bian Y, Xu K, Han C, Dong L (2016) The physical properties of poly(l-lactide) and functionalized eggshell powder composites. Int J Biol Macromol 85:63–73CrossRef
23.
go back to reference Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Pure Appl Chem A33(5):585–597CrossRef Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Pure Appl Chem A33(5):585–597CrossRef
24.
go back to reference Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219CrossRef Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219CrossRef
25.
go back to reference Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer 47(20):7178–7188CrossRef Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer 47(20):7178–7188CrossRef
26.
go back to reference Mohapatra AK, Mohanty S, Nayak SK (2014) Properties and characterization of biodegradable poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) and PLA/PEG/organoclay. J Thermoplast Compos Mater 29(4):443–463CrossRef Mohapatra AK, Mohanty S, Nayak SK (2014) Properties and characterization of biodegradable poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) and PLA/PEG/organoclay. J Thermoplast Compos Mater 29(4):443–463CrossRef
27.
go back to reference Mauck SC, Wang S, Ding W, Rohde BJ, Fortune CK, Yang G, Ahn SK, Robertson ML (2016) Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer. Macromolecules 49:1605–1615CrossRef Mauck SC, Wang S, Ding W, Rohde BJ, Fortune CK, Yang G, Ahn SK, Robertson ML (2016) Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer. Macromolecules 49:1605–1615CrossRef
28.
go back to reference Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143CrossRef Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143CrossRef
29.
go back to reference Ali F, Chang YW, Kang SC, Yoon JY (2008) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62(1):91–98CrossRef Ali F, Chang YW, Kang SC, Yoon JY (2008) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62(1):91–98CrossRef
30.
go back to reference Xu YQ, Qu JP (2009) Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). J Appl Polym Sci 112(6):3185–3191CrossRef Xu YQ, Qu JP (2009) Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). J Appl Polym Sci 112(6):3185–3191CrossRef
31.
go back to reference Xiong Z, Dai X, Na H, Tang Z, Zhang R, Zhu J (2015) A toughened PLA/nanosilica composite obtained in the presence of epoxidized soybean oil. J Appl Polym Sci 132(1):41220–41227CrossRef Xiong Z, Dai X, Na H, Tang Z, Zhang R, Zhu J (2015) A toughened PLA/nanosilica composite obtained in the presence of epoxidized soybean oil. J Appl Polym Sci 132(1):41220–41227CrossRef
32.
go back to reference Zhao TH, Yuan WQ, Li YD, Weng YX, Zeng JB (2018) Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends. Macromolecules 51(5):2027–2037CrossRef Zhao TH, Yuan WQ, Li YD, Weng YX, Zeng JB (2018) Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends. Macromolecules 51(5):2027–2037CrossRef
33.
go back to reference Liu GC, He YS, Zeng JB, Li QT, Wang YZ (2014) Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization. Biomacromolecules 15(11):4260–4271CrossRef Liu GC, He YS, Zeng JB, Li QT, Wang YZ (2014) Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization. Biomacromolecules 15(11):4260–4271CrossRef
34.
go back to reference Huda MS, Drzal LT, Mohanty AK, Misra M (2007) The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos Part B Eng 38(3):367–379CrossRef Huda MS, Drzal LT, Mohanty AK, Misra M (2007) The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos Part B Eng 38(3):367–379CrossRef
35.
go back to reference Piekarska K, Piorkowska E, Bojda J (2017) The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polym Test 62:203–209CrossRef Piekarska K, Piorkowska E, Bojda J (2017) The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polym Test 62:203–209CrossRef
36.
go back to reference Cai J, Xiong Z, Zhou M, Tan J, Zeng F, Meihuma Lin S, Xiong H (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly(varepsilon-caprolactone) composites. Carbohydr Polym 102:746–754CrossRef Cai J, Xiong Z, Zhou M, Tan J, Zeng F, Meihuma Lin S, Xiong H (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly(varepsilon-caprolactone) composites. Carbohydr Polym 102:746–754CrossRef
37.
go back to reference Run M, Song H, Wang S, Bai L, Jia Y (2009) Crystal morphology, melting behaviors and isothermal crystallization kinetics of SCF/PTT composites. Polym Compos 30(1):87–94CrossRef Run M, Song H, Wang S, Bai L, Jia Y (2009) Crystal morphology, melting behaviors and isothermal crystallization kinetics of SCF/PTT composites. Polym Compos 30(1):87–94CrossRef
38.
go back to reference Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test 26(2):222–231CrossRef Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test 26(2):222–231CrossRef
Metadata
Title
Production and characterization of sustainable poly(lactic acid)/functionalized-eggshell composites plasticized by epoxidized soybean oil
Authors
Junjun Kong
Changyu Han
Yancun Yu
Lisong Dong
Publication date
02-07-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 20/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2656-y

Other articles of this Issue 20/2018

Journal of Materials Science 20/2018 Go to the issue

Premium Partners