Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

2. Production and Perception of Voice

Author: Rita Singh

Published in: Profiling Humans from their Voice

Publisher: Springer Singapore

share
SHARE

Abstract

The goal of this chapter is to present the human speech production process in sufficient detail for the reader to understand why profiling should be possible, and to provide sufficient information to reason about the effects of different parameters on voice, so that profiling efforts may be better guided. The details are sufficient, but not complete since the area is too vast to be covered within one chapter of this book.
Literature
1.
go back to reference Titze, I. R., Luschei, E. S., & Hirano, M. (1989). Role of the thyroarytenoid muscle in regulation of fundamental frequency. Journal of Voice, 3(3), 213–224. CrossRef Titze, I. R., Luschei, E. S., & Hirano, M. (1989). Role of the thyroarytenoid muscle in regulation of fundamental frequency. Journal of Voice, 3(3), 213–224. CrossRef
2.
go back to reference Hermand, E., Lhuissier, F. J., Larribaut, J., Pichon, A., & Richalet, J. P. (2015). Ventilatory oscillations at exercise: Effects of hyperoxia, hypercapnia, and acetazolamide. Physiological Reports, 3(6), e12446. Hermand, E., Lhuissier, F. J., Larribaut, J., Pichon, A., & Richalet, J. P. (2015). Ventilatory oscillations at exercise: Effects of hyperoxia, hypercapnia, and acetazolamide. Physiological Reports, 3(6), e12446.
3.
go back to reference Yamagishi, M., Ishizuka, Y., Fujiwara, M., Nakamura, H., Igarashi, S., Nakano, Y., et al. (1993). Distribution of calcium binding proteins in sensory organs of the ear, nose and throat. Acta Oto-Laryngologica, 113(sup506), 85–89. CrossRef Yamagishi, M., Ishizuka, Y., Fujiwara, M., Nakamura, H., Igarashi, S., Nakano, Y., et al. (1993). Distribution of calcium binding proteins in sensory organs of the ear, nose and throat. Acta Oto-Laryngologica, 113(sup506), 85–89. CrossRef
4.
go back to reference Sataloff, R. T. (2017). Clinical anatomy and physiology of the voice. Professional voice: The science and art of clinical care (4th ed., pp. 157–196). California: Plural Publishing, San Diego. Sataloff, R. T. (2017). Clinical anatomy and physiology of the voice. Professional voice: The science and art of clinical care (4th ed., pp. 157–196). California: Plural Publishing, San Diego.
5.
go back to reference Baer, T. (1981). Investigation of the phonatory mechanism. Status report on speech research SR-66 (pp. 35–54). New Haven: Haskins Laboratories. Baer, T. (1981). Investigation of the phonatory mechanism. Status report on speech research SR-66 (pp. 35–54). New Haven: Haskins Laboratories.
6.
go back to reference Zhang, Z. (2009). Characteristics of phonation onset in a two-layer vocal fold model. The Journal of the Acoustical Society of America, 125(2), 1091–1102. CrossRef Zhang, Z. (2009). Characteristics of phonation onset in a two-layer vocal fold model. The Journal of the Acoustical Society of America, 125(2), 1091–1102. CrossRef
7.
go back to reference Flanagan, J., & Landgraf, L. (1968). Self-oscillating source for vocal-tract synthesizers. IEEE Transactions on Audio and Electroacoustics, 16(1), 57–64. CrossRef Flanagan, J., & Landgraf, L. (1968). Self-oscillating source for vocal-tract synthesizers. IEEE Transactions on Audio and Electroacoustics, 16(1), 57–64. CrossRef
8.
go back to reference Ishizaka, K., & Flanagan, J. L. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell System Technical Journal, 51(6), 1233–1268. CrossRef Ishizaka, K., & Flanagan, J. L. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell System Technical Journal, 51(6), 1233–1268. CrossRef
9.
go back to reference Zhang, Z., Neubauer, J., & Berry, D. A. (2006). The influence of subglottal acoustics on laboratory models of phonation. The Journal of the Acoustical Society of America, 120(3), 1558–1569. CrossRef Zhang, Z., Neubauer, J., & Berry, D. A. (2006). The influence of subglottal acoustics on laboratory models of phonation. The Journal of the Acoustical Society of America, 120(3), 1558–1569. CrossRef
10.
go back to reference Zhang, Z., Neubauer, J., & Berry, D. A. (2007). Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation. The Journal of the Acoustical Society of America, 122(4), 2279–2295. CrossRef Zhang, Z., Neubauer, J., & Berry, D. A. (2007). Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation. The Journal of the Acoustical Society of America, 122(4), 2279–2295. CrossRef
11.
go back to reference Zhao, W., Zhang, C., Frankel, S. H., & Mongeau, L. (2002). Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms. The Journal of the Acoustical Society of America, 112(5), 2134–2146. CrossRef Zhao, W., Zhang, C., Frankel, S. H., & Mongeau, L. (2002). Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms. The Journal of the Acoustical Society of America, 112(5), 2134–2146. CrossRef
12.
go back to reference Zhang, C., Zhao, W., Frankel, S. H., & Mongeau, L. (2002). Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds. The Journal of the Acoustical Society of America, 112(5), 2147–2154. CrossRef Zhang, C., Zhao, W., Frankel, S. H., & Mongeau, L. (2002). Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds. The Journal of the Acoustical Society of America, 112(5), 2147–2154. CrossRef
13.
go back to reference Chan, R. W., & Titze, I. R. (1999). Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results. The Journal of the Acoustical Society of America, 106(4), 2008–2021. CrossRef Chan, R. W., & Titze, I. R. (1999). Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results. The Journal of the Acoustical Society of America, 106(4), 2008–2021. CrossRef
14.
go back to reference Chan, R. W., & Rodriguez, M. L. (2008). A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies. The Journal of the Acoustical Society of America, 124(2), 1207–1219. CrossRef Chan, R. W., & Rodriguez, M. L. (2008). A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies. The Journal of the Acoustical Society of America, 124(2), 1207–1219. CrossRef
15.
go back to reference Miri, A. K., Mongrain, R., Chen, L. X., & Mongeau, L. (2012). Quantitative assessment of the anisotropy of vocal fold tissue using shear rheometry and traction testing. Journal of Biomechanics, 45(16), 2943–2946. CrossRef Miri, A. K., Mongrain, R., Chen, L. X., & Mongeau, L. (2012). Quantitative assessment of the anisotropy of vocal fold tissue using shear rheometry and traction testing. Journal of Biomechanics, 45(16), 2943–2946. CrossRef
16.
go back to reference Kazemirad, S., Bakhshaee, H., Mongeau, L., & Kost, K. (2014). Non-invasive in vivo measurement of the shear modulus of human vocal fold tissue. Journal of Biomechanics, 47(5), 1173–1179. CrossRef Kazemirad, S., Bakhshaee, H., Mongeau, L., & Kost, K. (2014). Non-invasive in vivo measurement of the shear modulus of human vocal fold tissue. Journal of Biomechanics, 47(5), 1173–1179. CrossRef
17.
go back to reference Haji, T., Mori, K., Omori, K., & Isshiki, N. (1992). Experimental studies on the viscoelasticity of the vocal fold. Acta Oto-Laryngologica, 112(1), 151–159. CrossRef Haji, T., Mori, K., Omori, K., & Isshiki, N. (1992). Experimental studies on the viscoelasticity of the vocal fold. Acta Oto-Laryngologica, 112(1), 151–159. CrossRef
18.
go back to reference Tran, Q. T., Gerratt, B. R., Berke, G. S., & Kreiman, J. (1993). Measurement of Young’s modulus in the in vivo human vocal folds. Annals of Otology, Rhinology and Laryngology, 102(8), 584–591. CrossRef Tran, Q. T., Gerratt, B. R., Berke, G. S., & Kreiman, J. (1993). Measurement of Young’s modulus in the in vivo human vocal folds. Annals of Otology, Rhinology and Laryngology, 102(8), 584–591. CrossRef
19.
go back to reference Chhetri, D. K., Zhang, Z., & Neubauer, J. (2011). Measurement of Young’s modulus of vocal folds by indentation. Journal of Voice, 25(1), 1–7. CrossRef Chhetri, D. K., Zhang, Z., & Neubauer, J. (2011). Measurement of Young’s modulus of vocal folds by indentation. Journal of Voice, 25(1), 1–7. CrossRef
20.
go back to reference Scherer, R. C., Shinwari, D., De Witt, K. J., Zhang, C., Kucinschi, B. R., & Afjeh, A. A. (2001). Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. The Journal of the Acoustical Society of America, 109(4), 1616–1630. CrossRef Scherer, R. C., Shinwari, D., De Witt, K. J., Zhang, C., Kucinschi, B. R., & Afjeh, A. A. (2001). Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. The Journal of the Acoustical Society of America, 109(4), 1616–1630. CrossRef
21.
go back to reference Li, S., Scherer, R. C., Wan, M., & Wang, S. (2012). The effect of entrance radii on intraglottal pressure distributions in the divergent glottis. The Journal of the Acoustical Society of America, 131(2), 1371–1377. CrossRef Li, S., Scherer, R. C., Wan, M., & Wang, S. (2012). The effect of entrance radii on intraglottal pressure distributions in the divergent glottis. The Journal of the Acoustical Society of America, 131(2), 1371–1377. CrossRef
22.
go back to reference Kettlewell, B. Q. (2015). The influence of intraglottal vortices upon the dynamics of the vocal folds. Master’s thesis, University of Waterloo, Canada. Kettlewell, B. Q. (2015). The influence of intraglottal vortices upon the dynamics of the vocal folds. Master’s thesis, University of Waterloo, Canada.
23.
go back to reference Shinwari, D., Scherer, R. C., DeWitt, K. J., & Afjeh, A. A. (2003). Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees. The Journal of the Acoustical Society of America, 113(1), 487–497. CrossRef Shinwari, D., Scherer, R. C., DeWitt, K. J., & Afjeh, A. A. (2003). Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees. The Journal of the Acoustical Society of America, 113(1), 487–497. CrossRef
24.
go back to reference Kucinschi, B. R., Scherer, R. C., DeWitt, K. J., & Ng, T. T. (2006). Flow visualization and acoustic consequences of the air moving through a static model of the human larynx. Journal of Biomechanical Engineering, 128(3), 380–390. CrossRef Kucinschi, B. R., Scherer, R. C., DeWitt, K. J., & Ng, T. T. (2006). Flow visualization and acoustic consequences of the air moving through a static model of the human larynx. Journal of Biomechanical Engineering, 128(3), 380–390. CrossRef
25.
go back to reference Erath, B. D., & Plesniak, M. W. (2006). The occurrence of the Coanda effect in pulsatile flow through static models of the human vocal folds. The Journal of the Acoustical Society of America, 120(2), 1000–1011. CrossRef Erath, B. D., & Plesniak, M. W. (2006). The occurrence of the Coanda effect in pulsatile flow through static models of the human vocal folds. The Journal of the Acoustical Society of America, 120(2), 1000–1011. CrossRef
26.
go back to reference Mihaescu, M., Khosla, S. M., Murugappan, S., & Gutmark, E. J. (2010). Unsteady laryngeal airflow simulations of the intra-glottal vortical structures. The Journal of the Acoustical Society of America, 127(1), 435–444. CrossRef Mihaescu, M., Khosla, S. M., Murugappan, S., & Gutmark, E. J. (2010). Unsteady laryngeal airflow simulations of the intra-glottal vortical structures. The Journal of the Acoustical Society of America, 127(1), 435–444. CrossRef
27.
go back to reference Hirano, M., Kakita, Y., & Daniloff, R. G. (1985). Cover-body theory of vocal fold vibration. In R. G. Daniloff (Ed.), Speech science (pp. 1–46). San Diego, California: College-Hill Press. Hirano, M., Kakita, Y., & Daniloff, R. G. (1985). Cover-body theory of vocal fold vibration. In R. G. Daniloff (Ed.), Speech science (pp. 1–46). San Diego, California: College-Hill Press.
28.
go back to reference Alipour, F., & Vigmostad, S. (2012). Measurement of vocal folds elastic properties for continuum modeling. Journal of Voice, 26(6), 816-e21. CrossRef Alipour, F., & Vigmostad, S. (2012). Measurement of vocal folds elastic properties for continuum modeling. Journal of Voice, 26(6), 816-e21. CrossRef
29.
go back to reference Kelleher, J. E., Siegmund, T., Du, M., Naseri, E., & Chan, R. W. (2013). Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomechanics and Modeling in Mechanobiology, 12(3), 555–567. CrossRef Kelleher, J. E., Siegmund, T., Du, M., Naseri, E., & Chan, R. W. (2013). Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomechanics and Modeling in Mechanobiology, 12(3), 555–567. CrossRef
30.
go back to reference Xuan, Y., & Zhang, Z. (2014). Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model. Journal of Speech, Language, and Hearing Research, 57(2), 416–425. MathSciNetCrossRef Xuan, Y., & Zhang, Z. (2014). Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model. Journal of Speech, Language, and Hearing Research, 57(2), 416–425. MathSciNetCrossRef
31.
go back to reference Hirano, M. (1974). Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatrica et Logopaedica, 26(2), 89–94. CrossRef Hirano, M. (1974). Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatrica et Logopaedica, 26(2), 89–94. CrossRef
32.
go back to reference Hirano, M., Kurita, S., & Sakaguchi, S. (1989). Ageing of the vibratory tissue of human vocal folds. Acta Oto-Laryngologica, 107(5–6), 428–433. CrossRef Hirano, M., Kurita, S., & Sakaguchi, S. (1989). Ageing of the vibratory tissue of human vocal folds. Acta Oto-Laryngologica, 107(5–6), 428–433. CrossRef
33.
go back to reference Zhang, Z. (2010). Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. The Journal of the Acoustical Society of America, 127(4), 2554–2562. CrossRef Zhang, Z. (2010). Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. The Journal of the Acoustical Society of America, 127(4), 2554–2562. CrossRef
34.
go back to reference Horáček, J., & Švec, J. G. (2002). Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold. Journal of Fluids and Structures, 16(7), 931–955. CrossRef Horáček, J., & Švec, J. G. (2002). Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold. Journal of Fluids and Structures, 16(7), 931–955. CrossRef
35.
go back to reference Titze, I. R., & Strong, W. J. (1975). Normal modes in vocal cord tissues. The Journal of the Acoustical Society of America, 57(3), 736–744. CrossRef Titze, I. R., & Strong, W. J. (1975). Normal modes in vocal cord tissues. The Journal of the Acoustical Society of America, 57(3), 736–744. CrossRef
36.
37.
go back to reference Mergell, P., & Herzel, G. H. (1997). Speech Communication, 22(2–3), 141–154. Mergell, P., & Herzel, G. H. (1997). Speech Communication, 22(2–3), 141–154.
38.
go back to reference Berry, D. A., Zhang, Z., & Neubauer, J. (2006). Mechanisms of irregular vibration in a physical model of the vocal folds. The Journal of the Acoustical Society of America, 120(3), EL36–EL42. Berry, D. A., Zhang, Z., & Neubauer, J. (2006). Mechanisms of irregular vibration in a physical model of the vocal folds. The Journal of the Acoustical Society of America, 120(3), EL36–EL42.
39.
go back to reference Steinecke, I., & Herzel, H. (1995). Bifurcations in an asymmetric vocal-fold model. The Journal of the Acoustical Society of America, 97(3), 1874–1884. CrossRef Steinecke, I., & Herzel, H. (1995). Bifurcations in an asymmetric vocal-fold model. The Journal of the Acoustical Society of America, 97(3), 1874–1884. CrossRef
40.
go back to reference Herbst, C. T., Lohscheller, J., Švec, J. G., Henrich, N., Weissengruber, G., & Fitch, W. T. (2014). Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings. Journal of Experimental Biology, 217(6), 955–963. CrossRef Herbst, C. T., Lohscheller, J., Švec, J. G., Henrich, N., Weissengruber, G., & Fitch, W. T. (2014). Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings. Journal of Experimental Biology, 217(6), 955–963. CrossRef
41.
go back to reference Large, J. (1972). Towards an integrated physiologic-acoustic theory of vocal registers. National Association of Teachers of Singing (NATS) Bulletin, 28(3), 18–25. Large, J. (1972). Towards an integrated physiologic-acoustic theory of vocal registers. National Association of Teachers of Singing (NATS) Bulletin, 28(3), 18–25.
42.
go back to reference Ware, C. (1998). Basics of vocal pedagogy: The foundations and process of singing. New York: McGraw-Hill. Ware, C. (1998). Basics of vocal pedagogy: The foundations and process of singing. New York: McGraw-Hill.
43.
go back to reference Fant, G. (1967). Auditory Patterns of Speech. Models for the perception of speech and visual form (pp. 111–125). Cambridge, Massachusetts: MIT Press. Fant, G. (1967). Auditory Patterns of Speech. Models for the perception of speech and visual form (pp. 111–125). Cambridge, Massachusetts: MIT Press.
44.
go back to reference Pinto, N. B., & Childers, D. G. (1988). Formant speech synthesis. IETE Journal of Research, 34(1), 5–20. CrossRef Pinto, N. B., & Childers, D. G. (1988). Formant speech synthesis. IETE Journal of Research, 34(1), 5–20. CrossRef
45.
go back to reference Spanias, A. S. (1994). Speech coding: A tutorial review. Proceedings of the IEEE, 82(10), 1541–1582. CrossRef Spanias, A. S. (1994). Speech coding: A tutorial review. Proceedings of the IEEE, 82(10), 1541–1582. CrossRef
46.
go back to reference Švec, J. G., Horáček, J., Šram, F., & Veselỳ, J. (2000). Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations. The Journal of the Acoustical Society of America, 108(4), 1397–1407. CrossRef Švec, J. G., Horáček, J., Šram, F., & Veselỳ, J. (2000). Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations. The Journal of the Acoustical Society of America, 108(4), 1397–1407. CrossRef
47.
go back to reference Ishizaka, K. (1988). Significance of Kaneko’s measurement of natural frequencies of the vocal folds. In O. Fujimura (Ed.), Vocal physiology: Voice production, mechanisms and functions (pp. 181–190). New York: AT&T Bell Laboratories, Raven Press. Ishizaka, K. (1988). Significance of Kaneko’s measurement of natural frequencies of the vocal folds. In O. Fujimura (Ed.), Vocal physiology: Voice production, mechanisms and functions (pp. 181–190). New York: AT&T Bell Laboratories, Raven Press.
48.
go back to reference Zhang, Z. (2016). Mechanics of human voice production and control. The Journal of the Acoustical Society of America, 140(4), 2614–2635. CrossRef Zhang, Z. (2016). Mechanics of human voice production and control. The Journal of the Acoustical Society of America, 140(4), 2614–2635. CrossRef
49.
go back to reference Rothenberg, M. (1973). A new inverse-filtering technique for deriving the glottal air flow waveform during voicing. The Journal of the Acoustical Society of America, 53(6), 1632–1645. CrossRef Rothenberg, M. (1973). A new inverse-filtering technique for deriving the glottal air flow waveform during voicing. The Journal of the Acoustical Society of America, 53(6), 1632–1645. CrossRef
50.
go back to reference Alku, P. (2011). Glottal inverse filtering analysis of human voice production - a review of estimation and parameterization methods of the glottal excitation and their applications. Sadhana, 36(5), 623–650. CrossRef Alku, P. (2011). Glottal inverse filtering analysis of human voice production - a review of estimation and parameterization methods of the glottal excitation and their applications. Sadhana, 36(5), 623–650. CrossRef
51.
go back to reference Fant, G. (2012). Acoustic theory of speech production: With calculations based on X-ray studies of Russian articulations (Vol. 2). Berlin: Walter de Gruyter. Fant, G. (2012). Acoustic theory of speech production: With calculations based on X-ray studies of Russian articulations (Vol. 2). Berlin: Walter de Gruyter.
52.
go back to reference Portnoff, M. R. (1973). A quasi-one-dimensional digital simulation for the time-varying vocal tract. Masters dissertation, Massachusetts Institute of Technology, Cambridge, USA. Portnoff, M. R. (1973). A quasi-one-dimensional digital simulation for the time-varying vocal tract. Masters dissertation, Massachusetts Institute of Technology, Cambridge, USA.
53.
go back to reference Story, B. H. (2005). A parametric model of the vocal tract area function for vowel and consonant simulation. The Journal of the Acoustical Society of America, 117(5), 3231–3254. CrossRef Story, B. H. (2005). A parametric model of the vocal tract area function for vowel and consonant simulation. The Journal of the Acoustical Society of America, 117(5), 3231–3254. CrossRef
54.
go back to reference Rabiner, L. R., & Schafer, R. W. (1978). Digital processing of speech signals. Englewood Cliffs, New Jersey: Prentice-Hall. Rabiner, L. R., & Schafer, R. W. (1978). Digital processing of speech signals. Englewood Cliffs, New Jersey: Prentice-Hall.
55.
go back to reference Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., et al. (2003). The CMU SPHINX-4 speech recognition system. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vol. 1, pp. 2–5). Hong Kong: IEEE. Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., et al. (2003). The CMU SPHINX-4 speech recognition system. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vol. 1, pp. 2–5). Hong Kong: IEEE.
56.
go back to reference Stevens, K. N. (2000). Acoustic phonetics. Cambridge, USA: MIT Press. Stevens, K. N. (2000). Acoustic phonetics. Cambridge, USA: MIT Press.
57.
go back to reference Ladefoged, P., & Maddieson, I. (1996). The sounds of the world’s languages (Vol. 1012). Oxford, UK: Blackwell Publishers. Ladefoged, P., & Maddieson, I. (1996). The sounds of the world’s languages (Vol. 1012). Oxford, UK: Blackwell Publishers.
58.
go back to reference Labov, W., Ash, S., & Boberg, C. (2005). The Atlas of North American English: Phonetics, phonology and sound change. Berlin: Walter de Gruyter. Labov, W., Ash, S., & Boberg, C. (2005). The Atlas of North American English: Phonetics, phonology and sound change. Berlin: Walter de Gruyter.
59.
go back to reference Stevens, K. N. (2000). Diverse acoustic cues at consonantal landmarks. Phonetica, 57(2–4), 139–151. CrossRef Stevens, K. N. (2000). Diverse acoustic cues at consonantal landmarks. Phonetica, 57(2–4), 139–151. CrossRef
60.
go back to reference Fant, G. (1960). Acoustic theory of speech production: With calculations based on X-ray studies of Russian articulations (Vol. 2). Berlin, Germany: Walter de Gruyter. Fant, G. (1960). Acoustic theory of speech production: With calculations based on X-ray studies of Russian articulations (Vol. 2). Berlin, Germany: Walter de Gruyter.
61.
go back to reference Saks, M. J., & Koehler, J. J. (2008). The individualization fallacy in forensic science evidence. Vanderbilt Law Review, 61(1), 197. Saks, M. J., & Koehler, J. J. (2008). The individualization fallacy in forensic science evidence. Vanderbilt Law Review, 61(1), 197.
62.
go back to reference Page, M., Taylor, J., & Blenkin, M. (2011). Uniqueness in the forensic identification sciences - fact or fiction? Forensic Science International, 206(1–3), 12–18. CrossRef Page, M., Taylor, J., & Blenkin, M. (2011). Uniqueness in the forensic identification sciences - fact or fiction? Forensic Science International, 206(1–3), 12–18. CrossRef
64.
go back to reference Jain, A. K., Prabhakar, S., & Pankanti, S. (2002). On the similarity of identical twin fingerprints. Pattern Recognition, 35(11), 2653–2663. CrossRef Jain, A. K., Prabhakar, S., & Pankanti, S. (2002). On the similarity of identical twin fingerprints. Pattern Recognition, 35(11), 2653–2663. CrossRef
65.
go back to reference Sun, Z., Paulino, A. A., Feng, J., Chai, Z., Tan, T., & Jain, A. K. (2010). A study of multibiometric traits of identical twins. Biometric technology for human identification VII (Vol. 7667, p. 76670T). International Society for Optics and Photonics. Sun, Z., Paulino, A. A., Feng, J., Chai, Z., Tan, T., & Jain, A. K. (2010). A study of multibiometric traits of identical twins. Biometric technology for human identification VII (Vol. 7667, p. 76670T). International Society for Optics and Photonics.
66.
go back to reference Van, W. G., Vercammen, J., & Debruyne, F. (2001). Voice similarity in identical twins. Acta Oto-Rhino-Laryngologica Belgica, 55(1), 49–55. Van, W. G., Vercammen, J., & Debruyne, F. (2001). Voice similarity in identical twins. Acta Oto-Rhino-Laryngologica Belgica, 55(1), 49–55.
67.
go back to reference Loakes, D. (2006). A forensic phonetic investigation into the speech patterns of identical and non-identical twins. Doctoral dissertation, School of Languages, University of Melbourne, Australia. Loakes, D. (2006). A forensic phonetic investigation into the speech patterns of identical and non-identical twins. Doctoral dissertation, School of Languages, University of Melbourne, Australia.
68.
go back to reference Koyama, T., Kawasaki, M., & Ogura, J. H. (1969). Mechanics of voice production. I. Regulation of vocal intensity. The Laryngoscope, 79(3), 337–354. Koyama, T., Kawasaki, M., & Ogura, J. H. (1969). Mechanics of voice production. I. Regulation of vocal intensity. The Laryngoscope, 79(3), 337–354.
69.
go back to reference Von Békésy, G., & Wever, E. G. (1960). Experiments in hearing (Vol. 8). New York: McGraw-Hill. Von Békésy, G., & Wever, E. G. (1960). Experiments in hearing (Vol. 8). New York: McGraw-Hill.
70.
go back to reference Reichenbach, T., & Hudspeth, A. J. (2014). The physics of hearing: Fluid mechanics and the active process of the inner ear. Reports on Progress in Physics, 77(7), 076601. Reichenbach, T., & Hudspeth, A. J. (2014). The physics of hearing: Fluid mechanics and the active process of the inner ear. Reports on Progress in Physics, 77(7), 076601.
71.
go back to reference Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands (Frequenzgruppen). The Journal of the Acoustical Society of America, 33(2), 248–248. CrossRef Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands (Frequenzgruppen). The Journal of the Acoustical Society of America, 33(2), 248–248. CrossRef
72.
go back to reference Fletcher, H., & Munson, W. A. (1933). Loudness, its definition, measurement and calculation. Bell System Technical Journal, 12(4), 377–430. CrossRef Fletcher, H., & Munson, W. A. (1933). Loudness, its definition, measurement and calculation. Bell System Technical Journal, 12(4), 377–430. CrossRef
73.
go back to reference Traunmüller, H. (1990). Analytical expressions for the tonotopic sensory scale. The Journal of the Acoustical Society of America, 88(1), 97–100. CrossRef Traunmüller, H. (1990). Analytical expressions for the tonotopic sensory scale. The Journal of the Acoustical Society of America, 88(1), 97–100. CrossRef
74.
go back to reference Moore, B. C., & Glasberg, B. R. (1983). Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. The Journal of the Acoustical Society of America, 74(3), 750–753. CrossRef Moore, B. C., & Glasberg, B. R. (1983). Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. The Journal of the Acoustical Society of America, 74(3), 750–753. CrossRef
75.
go back to reference Fillon, T., & Prado, J. (2003). Evaluation of an ERB frequency scale noise reduction for hearing aids: A comparative study. Speech Communication, 39(1–2), 23–32. CrossRef Fillon, T., & Prado, J. (2003). Evaluation of an ERB frequency scale noise reduction for hearing aids: A comparative study. Speech Communication, 39(1–2), 23–32. CrossRef
76.
go back to reference Smith, J. O., & Abel, J. S. (1999). Bark and ERB bilinear transforms. IEEE Transactions on Speech and Audio Processing, 7(6), 697–708. CrossRef Smith, J. O., & Abel, J. S. (1999). Bark and ERB bilinear transforms. IEEE Transactions on Speech and Audio Processing, 7(6), 697–708. CrossRef
77.
go back to reference Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of the psychological magnitude pitch. The Journal of the Acoustical Society of America, 8(3), 185–190. CrossRef Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of the psychological magnitude pitch. The Journal of the Acoustical Society of America, 8(3), 185–190. CrossRef
78.
go back to reference Holdsworth, J., Nimmo-Smith, I., Patterson, R., & Rice, P. (1988). Implementing a gammatone filter bank. Annex C of the SVOS Final Report: Part A: The Auditory Filterbank, 1, 1–5. Holdsworth, J., Nimmo-Smith, I., Patterson, R., & Rice, P. (1988). Implementing a gammatone filter bank. Annex C of the SVOS Final Report: Part A: The Auditory Filterbank, 1, 1–5.
79.
go back to reference Lyon, R. F., Katsiamis, A. G., & Drakakis, E. M. (2010). History and future of auditory filter models. In Proceedings the International Symposium on Circuits and Systems (pp. 3809–3812). IEEE. Lyon, R. F., Katsiamis, A. G., & Drakakis, E. M. (2010). History and future of auditory filter models. In Proceedings the International Symposium on Circuits and Systems (pp. 3809–3812). IEEE.
80.
go back to reference Greenwood, D. D. (1990). A cochlear frequency-position function for several species - 29 years later. The Journal of the Acoustical Society of America, 87(6), 2592–2605. CrossRef Greenwood, D. D. (1990). A cochlear frequency-position function for several species - 29 years later. The Journal of the Acoustical Society of America, 87(6), 2592–2605. CrossRef
81.
go back to reference Zwicker, E., & Fastl, H. (2013). Psychoacoustics: Facts and models (Vol. 22). New York: Springer Science & Business Media. Zwicker, E., & Fastl, H. (2013). Psychoacoustics: Facts and models (Vol. 22). New York: Springer Science & Business Media.
82.
go back to reference Flanagan, J. L. (2013). Speech analysis synthesis and perception (Vol. 3). New York: Springer Science & Business Media. Flanagan, J. L. (2013). Speech analysis synthesis and perception (Vol. 3). New York: Springer Science & Business Media.
83.
go back to reference Mersky, B. L. (1991). Method and apparatus for endodontically augmenting hearing. U.S. Patent 5,033,999. Mersky, B. L. (1991). Method and apparatus for endodontically augmenting hearing. U.S. Patent 5,033,999.
84.
go back to reference Winkworth, A. L., Davis, P. J., Adams, R. D., & Ellis, E. (1995). Breathing patterns during spontaneous speech. Journal of Speech, Language, and Hearing Research, 38(1), 124–144. CrossRef Winkworth, A. L., Davis, P. J., Adams, R. D., & Ellis, E. (1995). Breathing patterns during spontaneous speech. Journal of Speech, Language, and Hearing Research, 38(1), 124–144. CrossRef
85.
go back to reference Loudon, R. G., Lee, L., & Holcomb, B. J. (1988). Volumes and breathing patterns during speech in healthy and asthmatic subjects. Journal of Speech, Language, and Hearing Research, 31(2), 219–227. CrossRef Loudon, R. G., Lee, L., & Holcomb, B. J. (1988). Volumes and breathing patterns during speech in healthy and asthmatic subjects. Journal of Speech, Language, and Hearing Research, 31(2), 219–227. CrossRef
86.
go back to reference Bellemare, F., & Grassino, A. (1982). Effect of pressure and timing of contraction on human diaphragm fatigue. Journal of Applied Physiology, 53(5), 1190–1195. CrossRef Bellemare, F., & Grassino, A. (1982). Effect of pressure and timing of contraction on human diaphragm fatigue. Journal of Applied Physiology, 53(5), 1190–1195. CrossRef
87.
go back to reference Pauluhn, J. (2006). Acute nose-only exposure of rats to phosgene. Part I: Concentration \(\times \) time dependence of LC50s, nonlethal-threshold concentrations, and analysis of breathing patterns. Inhalation Toxicology, 18(6), 423–435. CrossRef Pauluhn, J. (2006). Acute nose-only exposure of rats to phosgene. Part I: Concentration \(\times \) time dependence of LC50s, nonlethal-threshold concentrations, and analysis of breathing patterns. Inhalation Toxicology, 18(6), 423–435. CrossRef
88.
go back to reference Lucía, A., Carvajal, A., Calderón, F. J., Alfonso, A., & Chicharro, J. L. (1999). Breathing pattern in highly competitive cyclists during incremental exercise. European Journal of Applied Physiology and Occupational Physiology, 79(6), 512–521. CrossRef Lucía, A., Carvajal, A., Calderón, F. J., Alfonso, A., & Chicharro, J. L. (1999). Breathing pattern in highly competitive cyclists during incremental exercise. European Journal of Applied Physiology and Occupational Physiology, 79(6), 512–521. CrossRef
Metadata
Title
Production and Perception of Voice
Author
Rita Singh
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8403-5_2