Skip to main content
Top
Published in: Cellulose 12/2018

08-10-2018 | Original Paper

Production of bacterial cellulose from byproduct of citrus juice processing (citrus pulp) by Gluconacetobacter hansenii

Authors: Yan Cao, Shengmin Lu, Ying Yang

Published in: Cellulose | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, bacterial cellulose (BC) was produced by Gluconacetobacter hansenii and Gluconacetobacter xylinum using citrus pulp water (CPW) and coconut water (CW). The productivity and the characteristics of the BCs produced by different strains and media were investigated. The results showed that BC production could reach more than 8.0 g DW L−1 by both G. hansenii and G. xylinum (8.42 ± 0.54 and 8.77 ± 0.64 g L−1) using CPW medium, which was close to the industrial level (9.91 ± 0.42 g L−1) by G. xylinum in CW medium. Therefore, CPW medium had strong universal utilization ability for BC production by both G. hansenii and G. xylinum. On the other hand, BC produced by G. hansenii in CPW medium had low hardness and high water holding capacity, and the preferred orientation of microfiber crystallites in BCs obtained by G. hansenii and G. xylinum using CPW was different. This difference enabled the production of BC products with different physicochemical features based on the requirements. In addition, the economics of BC production using CPW and CW as the raw fermentation materials was analyzed and compared, and the result indicated that the former was more economical and would be a promising candidate for producing BC. Finally, producing BC using CPW to replace the traditional CW medium would expand the raw material collection regions, reduce transportation cost, and realize BC products diversity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061PubMed Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061PubMed
go back to reference Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818CrossRef Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818CrossRef
go back to reference Bi JC, Liu SX, Li CF, Li J, Liu LX, Deng J, Yang YC (2014) Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture. J Appl Microbiol 117:1305–1311CrossRef Bi JC, Liu SX, Li CF, Li J, Liu LX, Deng J, Yang YC (2014) Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture. J Appl Microbiol 117:1305–1311CrossRef
go back to reference Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72(1–2):248–254CrossRef Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72(1–2):248–254CrossRef
go back to reference Çakar F, Kat G, Özer I, Demirbağ DD, Şahin F, Aytekin GÖ (2014) Newly developed medium and strategy for bacterial cellulose production. Biochem Eng J 92:35–40CrossRef Çakar F, Kat G, Özer I, Demirbağ DD, Şahin F, Aytekin GÖ (2014) Newly developed medium and strategy for bacterial cellulose production. Biochem Eng J 92:35–40CrossRef
go back to reference Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3–4):403–411CrossRef Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3–4):403–411CrossRef
go back to reference Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447–453CrossRef Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447–453CrossRef
go back to reference Dayal MS, Goswami N, Sahai A, Jain V, Mathur G, Mathur A (2013) Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydr Polym 94(1):12–16CrossRef Dayal MS, Goswami N, Sahai A, Jain V, Mathur G, Mathur A (2013) Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydr Polym 94(1):12–16CrossRef
go back to reference Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Proc 2:113–119 Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Proc 2:113–119
go back to reference Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pulp using Komagataeibacter xylinus. Carbohydr Polym 151:1068–1072CrossRef Fan X, Gao Y, He W, Hu H, Tian M, Wang K, Pan S (2016) Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pulp using Komagataeibacter xylinus. Carbohydr Polym 151:1068–1072CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef
go back to reference Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef
go back to reference Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30CrossRef Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30CrossRef
go back to reference Huang C, Guo HJ, Xiong L, Wang B, Shi SL, Chen XF, Lin XQ, Wang C, Luo J, Chen XD (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 136:198–202CrossRef Huang C, Guo HJ, Xiong L, Wang B, Shi SL, Chen XF, Lin XQ, Wang C, Luo J, Chen XD (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 136:198–202CrossRef
go back to reference Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88(2):183–188CrossRef Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88(2):183–188CrossRef
go back to reference Jozala GF, de Lencastre-Novaes LC, Lopes GM, de Carvalho S-EV, Mazzola PG, Pessoa-Jr G, Grotto D, Gerenutti M, Chaud MV (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072CrossRef Jozala GF, de Lencastre-Novaes LC, Lopes GM, de Carvalho S-EV, Mazzola PG, Pessoa-Jr G, Grotto D, Gerenutti M, Chaud MV (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072CrossRef
go back to reference Kelebek H (2010) Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (Citrus paradisi) cultivars grown in Turkey. Ind Crop Prod 32:269–274CrossRef Kelebek H (2010) Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (Citrus paradisi) cultivars grown in Turkey. Ind Crop Prod 32:269–274CrossRef
go back to reference Kurosumi G, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335CrossRef Kurosumi G, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335CrossRef
go back to reference Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119CrossRef Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119CrossRef
go back to reference Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119CrossRef Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119CrossRef
go back to reference Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRef Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRef
go back to reference Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol–bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res B 86(2):444–452CrossRef Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol–bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res B 86(2):444–452CrossRef
go back to reference Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523CrossRef Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523CrossRef
go back to reference Nayar NM (2017) The coconut in the world. In: The coconut. Academic Press, Salt Lake City, pp 1–8 Nayar NM (2017) The coconut in the world. In: The coconut. Academic Press, Salt Lake City, pp 1–8
go back to reference Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef
go back to reference Padmanaban S, Balaji N, Muthukumaran C, Tamilarasan K (2015) Statistical optimization of process parameters for exopolysaccharide production by Aureobasidium pullulans using sweet potato based medium. Biotech 5(6):1067–1073 Padmanaban S, Balaji N, Muthukumaran C, Tamilarasan K (2015) Statistical optimization of process parameters for exopolysaccharide production by Aureobasidium pullulans using sweet potato based medium. Biotech 5(6):1067–1073
go back to reference Seifert M, Hesse S, Kabrelian V, Klemm D (2004) Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Polym Sci Polym Chem 42(3):463–470CrossRef Seifert M, Hesse S, Kabrelian V, Klemm D (2004) Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Polym Sci Polym Chem 42(3):463–470CrossRef
go back to reference Setyawati MI, Chien L, Lee C (2007) Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O2 tension maximizes bacterial cellulose pellicle production. J Biotechnol 132(1):38–43CrossRef Setyawati MI, Chien L, Lee C (2007) Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O2 tension maximizes bacterial cellulose pellicle production. J Biotechnol 132(1):38–43CrossRef
go back to reference Shah N, Ha JH, Park JK (2010) Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol Bioprocess Eng 15(1):110–118CrossRef Shah N, Ha JH, Park JK (2010) Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol Bioprocess Eng 15(1):110–118CrossRef
go back to reference Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598CrossRef Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598CrossRef
go back to reference Shan Y (2016) Comprehensive utilization of citrus by-product. Academic Press, Elsevier, New York, pp 86–91 Shan Y (2016) Comprehensive utilization of citrus by-product. Academic Press, Elsevier, New York, pp 86–91
go back to reference Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10(1):1–8CrossRef Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10(1):1–8CrossRef
go back to reference Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33(8):1547–1571CrossRef Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol Adv 33(8):1547–1571CrossRef
go back to reference Takai M, Tsuta Y, Watanabe S (1975) Biosynthesis of cellulose by Acetobacter xylinum. I. Characterizations of bacterial cellulose. Polym J 7(2):137–146CrossRef Takai M, Tsuta Y, Watanabe S (1975) Biosynthesis of cellulose by Acetobacter xylinum. I. Characterizations of bacterial cellulose. Polym J 7(2):137–146CrossRef
go back to reference Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter Xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261CrossRef Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter Xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261CrossRef
go back to reference Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187–200CrossRef Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187–200CrossRef
go back to reference Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90(1):116–121CrossRef Wu JM, Liu RH (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90(1):116–121CrossRef
go back to reference Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74(3):659–665CrossRef Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74(3):659–665CrossRef
go back to reference Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92(2):2012–2017CrossRef Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92(2):2012–2017CrossRef
go back to reference Yang XY, Huang C, Guo HJ, Xiong L, Luo J, Wang B, Lin XQ, Chen XF, Chen XD (2014) Bacterial Cellulose Production from the litchi extract by Gluconacetobacter xylinus. Prep Biochem Biotech 46(1):39–43CrossRef Yang XY, Huang C, Guo HJ, Xiong L, Luo J, Wang B, Lin XQ, Chen XF, Chen XD (2014) Bacterial Cellulose Production from the litchi extract by Gluconacetobacter xylinus. Prep Biochem Biotech 46(1):39–43CrossRef
go back to reference Yang Y, Li C, Deng J, Liu L, Hu Q (2015) Changes of chemical composition and microbial community during naturally fermented coconut water used in nata de coco production. Food Res Dev 36(21):168–171 Yang Y, Li C, Deng J, Liu L, Hu Q (2015) Changes of chemical composition and microbial community during naturally fermented coconut water used in nata de coco production. Food Res Dev 36(21):168–171
go back to reference Yao W, Wu X, Zhu J, Sun B, Zhang YY, Miller C (2011) Bacterial cellulose membrane—a new support carrier for yeast immobilization for ethanol fermentation. Process Biochem 46(10):2054–2058CrossRef Yao W, Wu X, Zhu J, Sun B, Zhang YY, Miller C (2011) Bacterial cellulose membrane—a new support carrier for yeast immobilization for ethanol fermentation. Process Biochem 46(10):2054–2058CrossRef
go back to reference Yue YY, Zhou CJ, French AD, Xia G, Han GP, Wang QW, Wu QL (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187CrossRef Yue YY, Zhou CJ, French AD, Xia G, Han GP, Wang QW, Wu QL (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187CrossRef
Metadata
Title
Production of bacterial cellulose from byproduct of citrus juice processing (citrus pulp) by Gluconacetobacter hansenii
Authors
Yan Cao
Shengmin Lu
Ying Yang
Publication date
08-10-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 12/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2056-0

Other articles of this Issue 12/2018

Cellulose 12/2018 Go to the issue