Skip to main content
Top

2017 | OriginalPaper | Chapter

Production of Single- and Few-Layer Graphene from Graphite

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Intensive research has been carried out over the past few years to find industrial-scale methods for the preparation of monolayer or few-layer graphene. However, large-scale, economical production of graphene with a low level of defects remains challenging. In this chapter, we review the research on several techniques for production of single- and few-layer graphene, particularly concerning mechanical exfoliation of high-quality graphene. We report our production scheme for graphite nanosheets from natural graphite. Crystalline graphite nanosheets were successfully produced from natural graphite powder by solution-phase synthesis of graphite intercalation compounds, following wet planetary-ball milling. We emphasize the high potential of graphene as a conductive composite film. Some composite films derived from phenolic resin and graphite nanosheets displayed much higher electrical conductivities than those of films from natural graphite particles. We also show that the stage structure of synthetic graphite intercalation compounds affected film conductivity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Yamanaka, T. Nishino, T. Fujimoto, Y. Kuga, Production of thin graphite sheets for a high electrical conductivity film by the mechanical delamination of ternary graphite intercalation compounds. Carbon 50, 5027–5033 (2012)CrossRef S. Yamanaka, T. Nishino, T. Fujimoto, Y. Kuga, Production of thin graphite sheets for a high electrical conductivity film by the mechanical delamination of ternary graphite intercalation compounds. Carbon 50, 5027–5033 (2012)CrossRef
2.
go back to reference Y. Hirabayashi, S. Nakahira, S. Yamanaka, T. Fujimoto, Y. Kuga, Characterization of conductivity of graphite-phenolic resin composite and its application to heating plywood. J. Soc. Powder Technol. Jpn. 49, 164–170 (2012)CrossRef Y. Hirabayashi, S. Nakahira, S. Yamanaka, T. Fujimoto, Y. Kuga, Characterization of conductivity of graphite-phenolic resin composite and its application to heating plywood. J. Soc. Powder Technol. Jpn. 49, 164–170 (2012)CrossRef
3.
go back to reference A. Wakabayashi, Y. Sasakawa, T. Dobashi, T. Yamamoto, Self-assembly of tin oxide nanoparticles: localized percolating network formation in polymer matrix. Langmuir 22, 9260–9263 (2006)CrossRef A. Wakabayashi, Y. Sasakawa, T. Dobashi, T. Yamamoto, Self-assembly of tin oxide nanoparticles: localized percolating network formation in polymer matrix. Langmuir 22, 9260–9263 (2006)CrossRef
4.
go back to reference K. Ichimura, Technologies for LCD Color Filters (CMC, Tokyo, 2010) K. Ichimura, Technologies for LCD Color Filters (CMC, Tokyo, 2010)
5.
go back to reference K. Nagata, H. Iwabuki, H. Nigo, Effect of particle size of graphites on electrical conductivity of graphite/polymer composite. Compos. Interfaces 6, 483–495 (1998)CrossRef K. Nagata, H. Iwabuki, H. Nigo, Effect of particle size of graphites on electrical conductivity of graphite/polymer composite. Compos. Interfaces 6, 483–495 (1998)CrossRef
6.
go back to reference M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)CrossRef M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)CrossRef
7.
go back to reference D.M. Bigg, Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. Plym. Eng. Sci. 19, 1188–1192 (1979)CrossRef D.M. Bigg, Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. Plym. Eng. Sci. 19, 1188–1192 (1979)CrossRef
8.
go back to reference I.-G. Chen, W.B. Johnson, Alternating-current electrical properties of random metal-insulator composites. J. Mater. Sci. 26, 1565–1576 (1991)CrossRef I.-G. Chen, W.B. Johnson, Alternating-current electrical properties of random metal-insulator composites. J. Mater. Sci. 26, 1565–1576 (1991)CrossRef
9.
go back to reference T. Katsura, M.R. Kamal, L.A. Utracki, Electrical and thermal properties of polypropylene filled with steel fibers. Polym. Compos. 5, 193–202 (1985) T. Katsura, M.R. Kamal, L.A. Utracki, Electrical and thermal properties of polypropylene filled with steel fibers. Polym. Compos. 5, 193–202 (1985)
10.
go back to reference T. Katsura, M.R. Kamal, L.A. Utracki, Some properties of polypropylene filled with metal fibers. Polym. Compos. 6, 282–295 (1985)CrossRef T. Katsura, M.R. Kamal, L.A. Utracki, Some properties of polypropylene filled with metal fibers. Polym. Compos. 6, 282–295 (1985)CrossRef
11.
go back to reference G.G. Tibbetts, M.L. Lake, K.L. Strong, B.P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 67, 1709–1718 (2007)CrossRef G.G. Tibbetts, M.L. Lake, K.L. Strong, B.P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 67, 1709–1718 (2007)CrossRef
12.
go back to reference Y.S. Wang, M.A. O'Gurkis, T. Lindt, Electrical properties of exfoliated-graphite filled polyethylene composites. Polym. Compos. 7, 349–354 (1986)CrossRef Y.S. Wang, M.A. O'Gurkis, T. Lindt, Electrical properties of exfoliated-graphite filled polyethylene composites. Polym. Compos. 7, 349–354 (1986)CrossRef
13.
go back to reference P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A 41, 1345–1367 (2010)CrossRef P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A 41, 1345–1367 (2010)CrossRef
14.
go back to reference W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009)CrossRef W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009)CrossRef
15.
go back to reference U. Dettlaff-Weghkowska, M. Kaempgen, B. Hornbostel, V. Skakalova, J.P. Wang, J.D. Liang, Conducting and transparent SWNT/polymer composites. Phys. Status Solidi B 243, 3440–3444 (2006)CrossRef U. Dettlaff-Weghkowska, M. Kaempgen, B. Hornbostel, V. Skakalova, J.P. Wang, J.D. Liang, Conducting and transparent SWNT/polymer composites. Phys. Status Solidi B 243, 3440–3444 (2006)CrossRef
16.
go back to reference B. Hornbostel, P. Potschke, J. Kotz, S. Roth, Single-walled carbon nanotubes/polycarbonate composites: basic electrical and mechanical properties. Phys. Status Solidi B 243, 3445–3451 (2006)CrossRef B. Hornbostel, P. Potschke, J. Kotz, S. Roth, Single-walled carbon nanotubes/polycarbonate composites: basic electrical and mechanical properties. Phys. Status Solidi B 243, 3445–3451 (2006)CrossRef
17.
go back to reference A. Mierczynska, M. Mayne-L’Hermite, G. Boiteux, Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J. Appl. Polym. Sci. 105, 158–168 (2007)CrossRef A. Mierczynska, M. Mayne-L’Hermite, G. Boiteux, Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J. Appl. Polym. Sci. 105, 158–168 (2007)CrossRef
18.
go back to reference J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)CrossRef J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)CrossRef
19.
go back to reference T. Wang, C.H. Lei, A.B. Dalton, C. Creton, Y. Lin, K.A.S. Fernando, Y.P. Sun, M. Manea, J.M. Asua, J.L. Keddie, Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity. Adv. Mater. 18, 2730–2734 (2006)CrossRef T. Wang, C.H. Lei, A.B. Dalton, C. Creton, Y. Lin, K.A.S. Fernando, Y.P. Sun, M. Manea, J.M. Asua, J.L. Keddie, Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity. Adv. Mater. 18, 2730–2734 (2006)CrossRef
20.
go back to reference G. Wu, T. Miura, S. Asai, M. Sumita, Carbon black-loading induced phase fluctuations in PVDF/PMMA miscible blends: dynamic percolation measurements. Polymer 42, 3271–3279 (2001)CrossRef G. Wu, T. Miura, S. Asai, M. Sumita, Carbon black-loading induced phase fluctuations in PVDF/PMMA miscible blends: dynamic percolation measurements. Polymer 42, 3271–3279 (2001)CrossRef
21.
go back to reference G. Wu, T. Miura, S. Asai, M. Sumita, A self-assembled electric conductive network in short carbon fiber filled poly(methyl methacrylate) composites with selective adsorption of polyethylene. Macromolecules 32, 3534–3536 (1999)CrossRef G. Wu, T. Miura, S. Asai, M. Sumita, A self-assembled electric conductive network in short carbon fiber filled poly(methyl methacrylate) composites with selective adsorption of polyethylene. Macromolecules 32, 3534–3536 (1999)CrossRef
22.
go back to reference M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47, 2–22 (2009)CrossRef M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47, 2–22 (2009)CrossRef
23.
go back to reference G. Chen, D. Wu, W. Weng, C. Wu, Exfoliation of graphite flake and its nanocomposites. Carbon 41, 619–621 (2003)CrossRef G. Chen, D. Wu, W. Weng, C. Wu, Exfoliation of graphite flake and its nanocomposites. Carbon 41, 619–621 (2003)CrossRef
24.
go back to reference S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
25.
go back to reference Y. Kuga, M. Shirahige, Y. Ohira, K. Ando, Production of finely ground natural graphite particles with high electrical conductivity by controlling the grinding atmosphere. Carbon 40, 695–701 (2002)CrossRef Y. Kuga, M. Shirahige, Y. Ohira, K. Ando, Production of finely ground natural graphite particles with high electrical conductivity by controlling the grinding atmosphere. Carbon 40, 695–701 (2002)CrossRef
26.
go back to reference Y. Kuga, M. Shirahige, T. Fujimoto, Y. Ohira, A. Ueda, Production of natural graphite particles with high electrical conductivity by grinding in alcoholic vapors. Carbon 42, 293–300 (2004)CrossRef Y. Kuga, M. Shirahige, T. Fujimoto, Y. Ohira, A. Ueda, Production of natural graphite particles with high electrical conductivity by grinding in alcoholic vapors. Carbon 42, 293–300 (2004)CrossRef
27.
go back to reference M. Shirahige, J. Iida, T. Fujimoto, Y. Kuga, M. Kawai, J. Katamura, Characteristics and hydrogen desorption property of nanostructured graphite produced by grinding in vacuum atmospheres. J. Soc. Powder Technol. Jpn. 42, 185–191 (2005)CrossRef M. Shirahige, J. Iida, T. Fujimoto, Y. Kuga, M. Kawai, J. Katamura, Characteristics and hydrogen desorption property of nanostructured graphite produced by grinding in vacuum atmospheres. J. Soc. Powder Technol. Jpn. 42, 185–191 (2005)CrossRef
28.
go back to reference B.G. Kim, S.K. Choi, H.S. Chung, J.J. Lee, F. Saito, Grinding characteristics of crystalline graphite in a low-pressure attrition system. Powder Technol. 126, 22–27 (2002)CrossRef B.G. Kim, S.K. Choi, H.S. Chung, J.J. Lee, F. Saito, Grinding characteristics of crystalline graphite in a low-pressure attrition system. Powder Technol. 126, 22–27 (2002)CrossRef
29.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
30.
go back to reference C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)CrossRef C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)CrossRef
31.
go back to reference Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Colema, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)CrossRef Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Colema, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)CrossRef
32.
go back to reference C. Knieke, A. Berger, M. Voigt, R.N.K. Taylor, J. Rohrl, W. Peukert, Scalable production of graphene sheets by mechanical delamination. Carbon 48, 3196–3204 (2010)CrossRef C. Knieke, A. Berger, M. Voigt, R.N.K. Taylor, J. Rohrl, W. Peukert, Scalable production of graphene sheets by mechanical delamination. Carbon 48, 3196–3204 (2010)CrossRef
33.
go back to reference M. Lotya, Y. Hernandez, J.K. Paul, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)CrossRef M. Lotya, Y. Hernandez, J.K. Paul, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)CrossRef
34.
go back to reference K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014)CrossRef K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014)CrossRef
35.
go back to reference A.G. Klechikov, G. Mercier, P. Merino, S. Blanco, C. Merino, A.V. Talyzin, Hydrogen storage in bulk graphene-related materials. Microporous Mesoporous Mater. 210, 46–51 (2015)CrossRef A.G. Klechikov, G. Mercier, P. Merino, S. Blanco, C. Merino, A.V. Talyzin, Hydrogen storage in bulk graphene-related materials. Microporous Mesoporous Mater. 210, 46–51 (2015)CrossRef
36.
go back to reference S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016)CrossRef S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016)CrossRef
37.
go back to reference C.-J. Shih, A. Vijayaraghavan, R. Krishnan, R. Sharma, J.-H. Han, M.-H. Ham, Z. Jin, S. Lin, G.L.C. Paulus, N.F. Reuel, Q.H. Wang, D. Blankschtein, M.S. Strano, Bi- and trilayer graphene solutions. Nat. Nanotechnol. 6, 439–445 (2011)CrossRef C.-J. Shih, A. Vijayaraghavan, R. Krishnan, R. Sharma, J.-H. Han, M.-H. Ham, Z. Jin, S. Lin, G.L.C. Paulus, N.F. Reuel, Q.H. Wang, D. Blankschtein, M.S. Strano, Bi- and trilayer graphene solutions. Nat. Nanotechnol. 6, 439–445 (2011)CrossRef
38.
go back to reference J.N. Israelachvili, Intermolecular and Surfaces Forces, 2nd edn. (Academic, London, 1992) J.N. Israelachvili, Intermolecular and Surfaces Forces, 2nd edn. (Academic, London, 1992)
39.
go back to reference M. Alanyalioglu, J.J. Segura, J. Oro-Sole, N. Casan-Pastor, The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50, 142–152 (2012)CrossRef M. Alanyalioglu, J.J. Segura, J. Oro-Sole, N. Casan-Pastor, The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50, 142–152 (2012)CrossRef
40.
go back to reference G.P. Moriarty, J.N. Wheeler, C. Yu, J.C. Grunlan, Increasing the thermoelectric power factor of polymer composites using a semiconducting stabilizer for carbon nanotubes. Carbon 50, 885–895 (2012)CrossRef G.P. Moriarty, J.N. Wheeler, C. Yu, J.C. Grunlan, Increasing the thermoelectric power factor of polymer composites using a semiconducting stabilizer for carbon nanotubes. Carbon 50, 885–895 (2012)CrossRef
41.
go back to reference H. Xu, H. Abe, M. Naito, Y. Fukumori, H. Ichikawa, S. Endoh, K. Hata, Efficient dispersing and shortening of super-growth carbon nanotubes by ultrasonic treatment with ceramic balls and surfactants. Adv. Powder Technol. 21, 551–555 (2010)CrossRef H. Xu, H. Abe, M. Naito, Y. Fukumori, H. Ichikawa, S. Endoh, K. Hata, Efficient dispersing and shortening of super-growth carbon nanotubes by ultrasonic treatment with ceramic balls and surfactants. Adv. Powder Technol. 21, 551–555 (2010)CrossRef
42.
go back to reference N. Erdinç, S. Göktürk, M. Tunçay, A study on the adsorption characteristics of an amphiphilic phenothiazine drug on activated charcoal in the presence of surfactants. Colloids Surf. B 75, 194–203 (2010)CrossRef N. Erdinç, S. Göktürk, M. Tunçay, A study on the adsorption characteristics of an amphiphilic phenothiazine drug on activated charcoal in the presence of surfactants. Colloids Surf. B 75, 194–203 (2010)CrossRef
43.
go back to reference M. Majumder, C. Rendall, M. Li, N. Behabtu, J.A. Eukel, R.H. Hauge, H.K. Schmidt, M. Pasquali, Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 65, 2000–2008 (2010)CrossRef M. Majumder, C. Rendall, M. Li, N. Behabtu, J.A. Eukel, R.H. Hauge, H.K. Schmidt, M. Pasquali, Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 65, 2000–2008 (2010)CrossRef
44.
go back to reference T.S. Ong, H. Yang, Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38, 2077–2085 (2000)CrossRef T.S. Ong, H. Yang, Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38, 2077–2085 (2000)CrossRef
45.
go back to reference O. Tanaike, M. Inagaki, Ternary intercalation compounds of carbon materials having a low graphitization degree with alkali metals. Carbon 35, 831–836 (1997)CrossRef O. Tanaike, M. Inagaki, Ternary intercalation compounds of carbon materials having a low graphitization degree with alkali metals. Carbon 35, 831–836 (1997)CrossRef
Metadata
Title
Production of Single- and Few-Layer Graphene from Graphite
Authors
Shinya Yamanaka
Mai Takase
Yoshikazu Kuga
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-61651-3_5

Premium Partners