Skip to main content
Top
Published in: Journal of Electronic Materials 8/2022

14-06-2022 | Review Article

Progress of Monomeric Perylene Diimide Derivatives As Non-Fullerene Acceptors for Organic Solar Cells

Authors: Linhua Zhang, Zhili Chen, Fengbo Sun, Yinuo Wang, Hanyi Bao, Xiang Gao, Zhitian Liu

Published in: Journal of Electronic Materials | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Perylene diimides (PDIs) are a competitive class of non-fullerene acceptors in organic solar cells (OSCs), owing to their advantages of low cost and good stability. Monomeric PDIs need fewer synthetic steps thus reducing synthetic complexity, which is vital for mass production. The device performances of OSCs based on monomeric PDI acceptors have achieved great progress in recent years, with the highest power conversion efficiency over 12%. In this work, the various molecular design strategies of monomeric PDI acceptors since 2016 are categorized and introduced to provide perspectives on molecular design guidelines. The insight and limitations are determined, and perspectives on the further development of monomeric PDI acceptors are provided, which could help to overcome the obstacles of moderate short current density (Jsc) and fill factor values.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Wöhrle and D. Meissner, Organic Solar Cells. Adv. Mater. 3, 129 (1991).CrossRef D. Wöhrle and D. Meissner, Organic Solar Cells. Adv. Mater. 3, 129 (1991).CrossRef
2.
go back to reference G. Li, R. Zhu and Y. Yang, Polymer Solar Cells. Nat. Photon. 6, 153 (2012).CrossRef G. Li, R. Zhu and Y. Yang, Polymer Solar Cells. Nat. Photon. 6, 153 (2012).CrossRef
3.
go back to reference S. Günes, H. Neugebauer, and N.S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 107, 1324 (2007).CrossRef S. Günes, H. Neugebauer, and N.S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 107, 1324 (2007).CrossRef
4.
go back to reference Y. Huang, E.J. Kramer, A.J. Heeger, and G.C. Bazan, Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chem. Rev. 114, 7006 (2014).CrossRef Y. Huang, E.J. Kramer, A.J. Heeger, and G.C. Bazan, Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chem. Rev. 114, 7006 (2014).CrossRef
5.
go back to reference G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 270, 1789 (1995).CrossRef G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 270, 1789 (1995).CrossRef
6.
go back to reference O. Inganäs, Organic Photovoltaics Over Three Decades. Adv. Mater. 30, 1800388 (2018).CrossRef O. Inganäs, Organic Photovoltaics Over Three Decades. Adv. Mater. 30, 1800388 (2018).CrossRef
7.
go back to reference M. Mainville and M. Leclerc, Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Lett. 5, 1186 (2020).CrossRef M. Mainville and M. Leclerc, Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Lett. 5, 1186 (2020).CrossRef
8.
go back to reference Y. Cui, Y. Wang, J. Bergqvist, H. Yao, Y. Xu, B. Gao, C. Yang, S. Zhang, O. Inganäs, F. Gao, and J. Hou, Wide-Gap Non-Fullerene Acceptor Enabling High-Performance Organic Photovoltaic Cells for Indoor Applications. Nat. Energy 4, 768 (2019).CrossRef Y. Cui, Y. Wang, J. Bergqvist, H. Yao, Y. Xu, B. Gao, C. Yang, S. Zhang, O. Inganäs, F. Gao, and J. Hou, Wide-Gap Non-Fullerene Acceptor Enabling High-Performance Organic Photovoltaic Cells for Indoor Applications. Nat. Energy 4, 768 (2019).CrossRef
9.
go back to reference F.-C. Chen, Emerging Organic and Organic/Inorganic Hybrid Photovoltaic Devices for Specialty Applications: Low-Level-Lighting Energy Conversion and Biomedical Treatment. Adv. Opt. Mater. 7, 1800662 (2019).CrossRef F.-C. Chen, Emerging Organic and Organic/Inorganic Hybrid Photovoltaic Devices for Specialty Applications: Low-Level-Lighting Energy Conversion and Biomedical Treatment. Adv. Opt. Mater. 7, 1800662 (2019).CrossRef
10.
go back to reference A. Wadsworth, Z. Hamid, J. Kosco, N. Gasparini, and I. McCulloch, The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Adv. Mater. 32, 2001763 (2020).CrossRef A. Wadsworth, Z. Hamid, J. Kosco, N. Gasparini, and I. McCulloch, The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Adv. Mater. 32, 2001763 (2020).CrossRef
11.
go back to reference J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, and A.B. Holmes, Efficient Photodiodes from Interpenetrating Polymer Networks. Nature 376, 498 (1995).CrossRef J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, and A.B. Holmes, Efficient Photodiodes from Interpenetrating Polymer Networks. Nature 376, 498 (1995).CrossRef
12.
go back to reference F. Zhao, H. Zhang, R. Zhang, J. Yuan, D. He, Y. Zou, and F. Gao, Emerging Approaches in enhancing the efficiency and stability in non-fullerene organic solar cells. Adv. Energy Mater. 10, 2002746 (2020).CrossRef F. Zhao, H. Zhang, R. Zhang, J. Yuan, D. He, Y. Zou, and F. Gao, Emerging Approaches in enhancing the efficiency and stability in non-fullerene organic solar cells. Adv. Energy Mater. 10, 2002746 (2020).CrossRef
13.
go back to reference J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, O. Inganäs, K. Gundogdu, F. Gao, and H. Yan, Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).CrossRef J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, O. Inganäs, K. Gundogdu, F. Gao, and H. Yan, Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).CrossRef
14.
go back to reference H. Bin, Z.-G. Zhang, L. Gao, S. Chen, L. Zhong, L. Xue, C. Yang, and Y. Li, Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2d-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 138, 4657 (2016).CrossRef H. Bin, Z.-G. Zhang, L. Gao, S. Chen, L. Zhong, L. Xue, C. Yang, and Y. Li, Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2d-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 138, 4657 (2016).CrossRef
15.
go back to reference W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, and J. Hou, Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734 (2016).CrossRef W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, and J. Hou, Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734 (2016).CrossRef
16.
go back to reference A. Tang, W. Song, B. Xiao, J. Guo, J. Min, Z. Ge, J. Zhang, Z. Wei, and E. Zhou, Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high Voc of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells. Chem. Mater. 31, 3941 (2019).CrossRef A. Tang, W. Song, B. Xiao, J. Guo, J. Min, Z. Ge, J. Zhang, Z. Wei, and E. Zhou, Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high Voc of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells. Chem. Mater. 31, 3941 (2019).CrossRef
17.
go back to reference X. Wang, A. Tang, J. Yang, M. Du, J. Li, G. Li, Q. Guo, and E. Zhou, Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V. Sci. China Chem. 63, 1666 (2020).CrossRef X. Wang, A. Tang, J. Yang, M. Du, J. Li, G. Li, Q. Guo, and E. Zhou, Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V. Sci. China Chem. 63, 1666 (2020).CrossRef
18.
go back to reference A. Tang, Z. Xiao, L. Ding, and E. Zhou, ~ 1.2 V open-circuit voltage from organic solar cells. J. Semicond. 42, 070202 (2021).CrossRef A. Tang, Z. Xiao, L. Ding, and E. Zhou, ~ 1.2 V open-circuit voltage from organic solar cells. J. Semicond. 42, 070202 (2021).CrossRef
19.
go back to reference Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, and K. Sun, 18% Efficiency organic solar cells. Sci. Bull. 65, 272 (2020).CrossRef Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, and K. Sun, 18% Efficiency organic solar cells. Sci. Bull. 65, 272 (2020).CrossRef
20.
go back to reference C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, and Y. Sun, Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605 (2021).CrossRef C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, and Y. Sun, Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605 (2021).CrossRef
21.
go back to reference Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel, G.T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C.T. Howells, O.M. Bakr, I. McCulloch, S.D. Wolf, L. Tsetseris, and T.D. Anthopoulos, self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5, 2935 (2020).CrossRef Y. Lin, Y. Firdaus, F.H. Isikgor, M.I. Nugraha, E. Yengel, G.T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C.T. Howells, O.M. Bakr, I. McCulloch, S.D. Wolf, L. Tsetseris, and T.D. Anthopoulos, self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 5, 2935 (2020).CrossRef
22.
go back to reference J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P.A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140 (2019).CrossRef J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P.A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140 (2019).CrossRef
23.
go back to reference Z. Liu, X. Zhang, P. Li, and X. Gao, Recent development of efficient A-D-A type fused-ring electron acceptors for organic solar. Sol. Energy 174, 171 (2018).CrossRef Z. Liu, X. Zhang, P. Li, and X. Gao, Recent development of efficient A-D-A type fused-ring electron acceptors for organic solar. Sol. Energy 174, 171 (2018).CrossRef
24.
go back to reference J. Hou, O. Inganäs, R.H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119 (2018).CrossRef J. Hou, O. Inganäs, R.H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119 (2018).CrossRef
25.
go back to reference S. Li, C.-Z. Li, M. Shi, and H. Chen, New Phase for Organic solar cell research: emergence of y-series electron acceptors and their perspectives. ACS Energy Lett. 5, 1554 (2020).CrossRef S. Li, C.-Z. Li, M. Shi, and H. Chen, New Phase for Organic solar cell research: emergence of y-series electron acceptors and their perspectives. ACS Energy Lett. 5, 1554 (2020).CrossRef
26.
go back to reference X. Liu, B. Xie, C. Duan, Z. Wang, B. Fan, K. Zhang, B. Lin, F.J.M. Colberts, W. Ma, R.A.J. Janssen, F. Huang, and Y. Cao, A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J. Mater. Chem. A 6, 395 (2018).CrossRef X. Liu, B. Xie, C. Duan, Z. Wang, B. Fan, K. Zhang, B. Lin, F.J.M. Colberts, W. Ma, R.A.J. Janssen, F. Huang, and Y. Cao, A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J. Mater. Chem. A 6, 395 (2018).CrossRef
27.
go back to reference R. Kerremans, C. Kaiser, W. Li, N. Zarrabi, P. Meredith, and A. Armin, The optical constants of solution-processed semiconductors—new challenges with perovskites and non-fullerene acceptors. Adv. Opt. Mater. 8, 2000319 (2020).CrossRef R. Kerremans, C. Kaiser, W. Li, N. Zarrabi, P. Meredith, and A. Armin, The optical constants of solution-processed semiconductors—new challenges with perovskites and non-fullerene acceptors. Adv. Opt. Mater. 8, 2000319 (2020).CrossRef
28.
go back to reference D. Li, X. Zhang, D. Liu, and T. Wang, Aggregation of non-fullerene acceptors in organic solar cells. J. Mater. Chem. A 8, 15607 (2020).CrossRef D. Li, X. Zhang, D. Liu, and T. Wang, Aggregation of non-fullerene acceptors in organic solar cells. J. Mater. Chem. A 8, 15607 (2020).CrossRef
29.
go back to reference A. Armin, W. Li, O.J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumüller, C. Brabec, and P. Meredith, A History and Perspective of Non-fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 11, 2003570 (2021).CrossRef A. Armin, W. Li, O.J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumüller, C. Brabec, and P. Meredith, A History and Perspective of Non-fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 11, 2003570 (2021).CrossRef
30.
go back to reference X. Du, T. Heumueller, W. Gruber, A. Classen, T. Unruh, N. Li, and C.J. Brabec, Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215 (2019).CrossRef X. Du, T. Heumueller, W. Gruber, A. Classen, T. Unruh, N. Li, and C.J. Brabec, Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215 (2019).CrossRef
31.
go back to reference Y. Zhou, M. Li, H. Lu, H. Jin, X. Wang, Y. Zhang, S. Shen, Z. Ma, J. Song, and Z. Bo, High-efficiency organic solar cells based on a low-cost fully non-fused electron acceptor. Adv. Funct. Mater. 31, 2101742 (2021).CrossRef Y. Zhou, M. Li, H. Lu, H. Jin, X. Wang, Y. Zhang, S. Shen, Z. Ma, J. Song, and Z. Bo, High-efficiency organic solar cells based on a low-cost fully non-fused electron acceptor. Adv. Funct. Mater. 31, 2101742 (2021).CrossRef
32.
go back to reference E.M. Speller, A.J. Clarke, J. Luke, H.K.H. Lee, J.R. Durrant, N. Li, T. Wang, H.C. Wong, J.-S. Kim, W.C. Tsoi, and Z. Li, From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 7, 23361 (2019).CrossRef E.M. Speller, A.J. Clarke, J. Luke, H.K.H. Lee, J.R. Durrant, N. Li, T. Wang, H.C. Wong, J.-S. Kim, W.C. Tsoi, and Z. Li, From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 7, 23361 (2019).CrossRef
33.
go back to reference A. Wadsworth, M. Moser, A. Marks, M.S. Little, N. Gasparini, C.J. Brabec, D. Baran, and I. McCulloch, Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48, 1596 (2019).CrossRef A. Wadsworth, M. Moser, A. Marks, M.S. Little, N. Gasparini, C.J. Brabec, D. Baran, and I. McCulloch, Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48, 1596 (2019).CrossRef
34.
go back to reference W. Li, D. Liu, and T. Wang, Stability Of Non-fullerene electron acceptors and their photovoltaic devices. Adv. Funct. Mater. 31, 2104552 (2021).CrossRef W. Li, D. Liu, and T. Wang, Stability Of Non-fullerene electron acceptors and their photovoltaic devices. Adv. Funct. Mater. 31, 2104552 (2021).CrossRef
35.
go back to reference J. Min, Y.N. Luponosov, C. Cui, B. Kan, H. Chen, X. Wan, Y. Chen, S.A. Ponomarenko, Y. Li, and C.J. Brabec, Evaluation of electron donor materials for solution-processed organic solar cells via a novel figure of merit. Adv. Energy Mater. 7, 1700465 (2017).CrossRef J. Min, Y.N. Luponosov, C. Cui, B. Kan, H. Chen, X. Wan, Y. Chen, S.A. Ponomarenko, Y. Li, and C.J. Brabec, Evaluation of electron donor materials for solution-processed organic solar cells via a novel figure of merit. Adv. Energy Mater. 7, 1700465 (2017).CrossRef
36.
go back to reference N. Li, I. McCulloch, and C.J. Brabec, Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11, 1355 (2018).CrossRef N. Li, I. McCulloch, and C.J. Brabec, Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11, 1355 (2018).CrossRef
37.
go back to reference M. Moser, A. Wadsworth, N. Gasparini, and I. McCulloch, Challenges to the success of commercial organic photovoltaic products. Adv. Energy Mater. 11, 2100056 (2021).CrossRef M. Moser, A. Wadsworth, N. Gasparini, and I. McCulloch, Challenges to the success of commercial organic photovoltaic products. Adv. Energy Mater. 11, 2100056 (2021).CrossRef
38.
go back to reference Y. Gao, M. Cui, S. Qu, H. Zhao, Z. Shen, F. Tan, Y. Dong, C. Qin, Z. Wang, W. Zhang, Z. Wang, and Y. Lei, Efficient organic solar cells enabled by simple non-fused electron donors with low synthetic complexity. Small 18, 2104623 (2021).CrossRef Y. Gao, M. Cui, S. Qu, H. Zhao, Z. Shen, F. Tan, Y. Dong, C. Qin, Z. Wang, W. Zhang, Z. Wang, and Y. Lei, Efficient organic solar cells enabled by simple non-fused electron donors with low synthetic complexity. Small 18, 2104623 (2021).CrossRef
39.
go back to reference S. Park and H.J. Son, Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors. J. Mater. Chem. A 7, 25830 (2019).CrossRef S. Park and H.J. Son, Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors. J. Mater. Chem. A 7, 25830 (2019).CrossRef
40.
go back to reference Z.-X. Liu, Z.-P. Yu, Z. Shen, C. He, T.-K. Lau, Z. Chen, H. Zhu, X. Lu, Z. Xie, H. Chen, and C.-Z. Li, Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 12, 3049 (2021).CrossRef Z.-X. Liu, Z.-P. Yu, Z. Shen, C. He, T.-K. Lau, Z. Chen, H. Zhu, X. Lu, Z. Xie, H. Chen, and C.-Z. Li, Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 12, 3049 (2021).CrossRef
41.
go back to reference A. Nowak-Król, K. Shoyama, M. Stolte, and F. Würthner, Naphthalene and perylene diimides: Better alternatives to fullerenes for organic electronics? Chem. Commun. 54, 13763 (2018).CrossRef A. Nowak-Król, K. Shoyama, M. Stolte, and F. Würthner, Naphthalene and perylene diimides: Better alternatives to fullerenes for organic electronics? Chem. Commun. 54, 13763 (2018).CrossRef
42.
go back to reference L. Chen, C. Li, and K. Müllen, Beyond perylene diimides: synthesis, assembly and function of higher rylene chromophores. J. Mater. Chem. C 2, 1938 (2014).CrossRef L. Chen, C. Li, and K. Müllen, Beyond perylene diimides: synthesis, assembly and function of higher rylene chromophores. J. Mater. Chem. C 2, 1938 (2014).CrossRef
43.
go back to reference G. Li, W. Yang, S. Wang, T. Liu, C. Yan, G. Li, Y. Zhang, D. Li, X. Wang, P. Hao, J. Li, L. Huo, H. Yan, and B. Tang, Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. J. Mater. Chem. C 7, 10901 (2019).CrossRef G. Li, W. Yang, S. Wang, T. Liu, C. Yan, G. Li, Y. Zhang, D. Li, X. Wang, P. Hao, J. Li, L. Huo, H. Yan, and B. Tang, Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. J. Mater. Chem. C 7, 10901 (2019).CrossRef
44.
go back to reference K. Ding, T. Shan, J. Xu, M. Li, Y. Wang, Y. Zhang, Z. Xie, Z. Ma, F. Liu, and H. Zhong, A perylene diimide-containing acceptor enables high fill factor in organic solar cells. Chem. Commun. 56, 11433 (2020).CrossRef K. Ding, T. Shan, J. Xu, M. Li, Y. Wang, Y. Zhang, Z. Xie, Z. Ma, F. Liu, and H. Zhong, A perylene diimide-containing acceptor enables high fill factor in organic solar cells. Chem. Commun. 56, 11433 (2020).CrossRef
45.
go back to reference Y.-C. Lin, C.-H. Chen, N.-Z. She, C.-Y. Juan, B. Chang, M.-H. Li, H.-C. Wang, H.-W. Cheng, A. Yabushita, Y. Yang, and K.-H. Wei, Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics. J. Mater. Chem. A 9, 20510 (2021).CrossRef Y.-C. Lin, C.-H. Chen, N.-Z. She, C.-Y. Juan, B. Chang, M.-H. Li, H.-C. Wang, H.-W. Cheng, A. Yabushita, Y. Yang, and K.-H. Wei, Twisted-graphene-like perylene diimide with dangling functional chromophores as tunable small-molecule acceptors in binary-blend active layers of organic photovoltaics. J. Mater. Chem. A 9, 20510 (2021).CrossRef
46.
go back to reference G. Zhang, J. Feng, X. Xu, W. Ma, Y. Li, and Q. Peng, Perylene diimide-based nonfullerene polymer solar cells with over 11% efficiency fabricated by smart molecular design and supramolecular morphology optimization. Adv. Funct. Mater. 29, 1906587 (2019).CrossRef G. Zhang, J. Feng, X. Xu, W. Ma, Y. Li, and Q. Peng, Perylene diimide-based nonfullerene polymer solar cells with over 11% efficiency fabricated by smart molecular design and supramolecular morphology optimization. Adv. Funct. Mater. 29, 1906587 (2019).CrossRef
47.
go back to reference S. Chen, D. Meng, J. Huang, N. Liang, Y. Li, F. Liu, H. Yan, and Z. Wang, Symmetry-induced orderly assembly achieving high-performance perylene diimide-based nonfullerene organic solar cells. CCS Chem. 3, 78 (2021).CrossRef S. Chen, D. Meng, J. Huang, N. Liang, Y. Li, F. Liu, H. Yan, and Z. Wang, Symmetry-induced orderly assembly achieving high-performance perylene diimide-based nonfullerene organic solar cells. CCS Chem. 3, 78 (2021).CrossRef
48.
go back to reference Z. Liu, Y. Wu, Q. Zhang, and X. Gao, Non-fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A 4, 17604 (2016).CrossRef Z. Liu, Y. Wu, Q. Zhang, and X. Gao, Non-fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A 4, 17604 (2016).CrossRef
49.
go back to reference R. Singh, M. Kim, J.-J. Lee, T. Ye, P.E. Keivanidis, and K. Cho, Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors. J. Mater. Chem. C 8, 1686 (2020).CrossRef R. Singh, M. Kim, J.-J. Lee, T. Ye, P.E. Keivanidis, and K. Cho, Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors. J. Mater. Chem. C 8, 1686 (2020).CrossRef
50.
go back to reference M. Nazari, E. Cieplechowicz, T.A. Welsh, and G.C. Welch, A direct comparison of monomeric vs. dimeric and non-annulated vs. N-annulated perylene diimide electron acceptors for organic photovoltaics. New J. Chem. 43, 5187 (2019).CrossRef M. Nazari, E. Cieplechowicz, T.A. Welsh, and G.C. Welch, A direct comparison of monomeric vs. dimeric and non-annulated vs. N-annulated perylene diimide electron acceptors for organic photovoltaics. New J. Chem. 43, 5187 (2019).CrossRef
51.
go back to reference G. Gao, N. Liang, H. Geng, W. Jiang, H. Fu, J. Feng, J. Hou, X. Feng, and Z. Wang, Spiro-fused perylene diimide arrays. J. Am. Chem. Soc. 139, 15914 (2017).CrossRef G. Gao, N. Liang, H. Geng, W. Jiang, H. Fu, J. Feng, J. Hou, X. Feng, and Z. Wang, Spiro-fused perylene diimide arrays. J. Am. Chem. Soc. 139, 15914 (2017).CrossRef
52.
go back to reference R. Singh, J. Lee, M. Kim, P.E. Keivanidis, and K. Cho, Control of the molecular geometry and nanoscale morphology in perylene diimide based bulk heterojunctions enables an efficient non-fullerene organic solar cell. J. Mater. Chem. A 5, 210 (2017).CrossRef R. Singh, J. Lee, M. Kim, P.E. Keivanidis, and K. Cho, Control of the molecular geometry and nanoscale morphology in perylene diimide based bulk heterojunctions enables an efficient non-fullerene organic solar cell. J. Mater. Chem. A 5, 210 (2017).CrossRef
53.
go back to reference H. Yin, S. Chen, P. Bi, X. Xu, S.H. Cheung, X. Hao, Q. Peng, X. Zhu, and S.K. So, Rationalizing device performance of perylenediimide derivatives as acceptors for bulk-heterojunction organic solar cells. Org. Electron. 65, 156 (2019).CrossRef H. Yin, S. Chen, P. Bi, X. Xu, S.H. Cheung, X. Hao, Q. Peng, X. Zhu, and S.K. So, Rationalizing device performance of perylenediimide derivatives as acceptors for bulk-heterojunction organic solar cells. Org. Electron. 65, 156 (2019).CrossRef
54.
go back to reference R.D. Pettipas, C.L. Radford, and T.L. Kelly, Regioisomerically pure 1,7-dicyanoperylene diimide dimer for charge extraction from donors with high electron affinities. ACS Omega 5, 16547 (2020).CrossRef R.D. Pettipas, C.L. Radford, and T.L. Kelly, Regioisomerically pure 1,7-dicyanoperylene diimide dimer for charge extraction from donors with high electron affinities. ACS Omega 5, 16547 (2020).CrossRef
55.
go back to reference H. Wang, Q. Fan, L. Chen, and Y. Xiao, Amino-acid ester derived perylene diimides electron acceptor materials: An efficient strategy for green-solvent-processed organic solar cells. Dyes Pigm. 164, 384 (2019).CrossRef H. Wang, Q. Fan, L. Chen, and Y. Xiao, Amino-acid ester derived perylene diimides electron acceptor materials: An efficient strategy for green-solvent-processed organic solar cells. Dyes Pigm. 164, 384 (2019).CrossRef
56.
go back to reference K. Fujimoto, S. Izawa, Y. Arikai, S. Sugimoto, H. Oue, T. Inuzuka, N. Uemura, M. Sakamoto, M. Hiramoto, and M. Takahashi, Regioselective bay-functionalization of perylenes toward tailor-made synthesis of acceptor materials for organic photovoltaics. ChemPlusChem 85, 285 (2020).CrossRef K. Fujimoto, S. Izawa, Y. Arikai, S. Sugimoto, H. Oue, T. Inuzuka, N. Uemura, M. Sakamoto, M. Hiramoto, and M. Takahashi, Regioselective bay-functionalization of perylenes toward tailor-made synthesis of acceptor materials for organic photovoltaics. ChemPlusChem 85, 285 (2020).CrossRef
57.
go back to reference J. Yi, J. Wang, Y. Lin, W. Gao, Y. Ma, H. Tan, H. Wang, and C.-Q. Ma, Molecular geometry regulation of bay-phenyl substituted perylenediimide derivatives with bulky alkyl chain for use in organic solar cells as the electron acceptor. Dyes Pigm. 136, 335 (2017).CrossRef J. Yi, J. Wang, Y. Lin, W. Gao, Y. Ma, H. Tan, H. Wang, and C.-Q. Ma, Molecular geometry regulation of bay-phenyl substituted perylenediimide derivatives with bulky alkyl chain for use in organic solar cells as the electron acceptor. Dyes Pigm. 136, 335 (2017).CrossRef
58.
go back to reference R. Mishra, R. Regar, V. Singh, P. Panini, R. Singhal, M.L. Keshtov, G.D. Sharma, and J. Sankar, Modulation of the power conversion efficiency of organic solar cells via architectural variation of a promising non-fullerene acceptor. J. Mater. Chem. A 6, 574 (2018).CrossRef R. Mishra, R. Regar, V. Singh, P. Panini, R. Singhal, M.L. Keshtov, G.D. Sharma, and J. Sankar, Modulation of the power conversion efficiency of organic solar cells via architectural variation of a promising non-fullerene acceptor. J. Mater. Chem. A 6, 574 (2018).CrossRef
59.
go back to reference T. Adhikari, Z. Ghoshouni Rahami, J.-M. Nunzi, and O. Lebel, Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives. Organ. Electron. 34, 146 (2016).CrossRef T. Adhikari, Z. Ghoshouni Rahami, J.-M. Nunzi, and O. Lebel, Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives. Organ. Electron. 34, 146 (2016).CrossRef
60.
go back to reference D. Meng, H. Fu, B. Fan, J. Zhang, Y. Li, Y. Sun, and Z. Wang, Rigid nonfullerene acceptors based on triptycene–perylene dye for organic solar cells. Chem. An Asian J. 12, 1286 (2017).CrossRef D. Meng, H. Fu, B. Fan, J. Zhang, Y. Li, Y. Sun, and Z. Wang, Rigid nonfullerene acceptors based on triptycene–perylene dye for organic solar cells. Chem. An Asian J. 12, 1286 (2017).CrossRef
61.
go back to reference A.D. Hendsbee, J.-P. Sun, W.K. Law, H. Yan, I.G. Hill, D.M. Spasyuk, and G.C. Welch, Synthesis, self-assembly, and solar cell performance of N-annulated perylene diimide non-fullerene acceptors. Chem. Mater. 28, 7098 (2016).CrossRef A.D. Hendsbee, J.-P. Sun, W.K. Law, H. Yan, I.G. Hill, D.M. Spasyuk, and G.C. Welch, Synthesis, self-assembly, and solar cell performance of N-annulated perylene diimide non-fullerene acceptors. Chem. Mater. 28, 7098 (2016).CrossRef
62.
go back to reference A.-J. Payne, S. Li, S.V. Dayneko, C. Risko, and G.C. Welch, An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells. Chem. Commun. 53, 10168 (2017).CrossRef A.-J. Payne, S. Li, S.V. Dayneko, C. Risko, and G.C. Welch, An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells. Chem. Commun. 53, 10168 (2017).CrossRef
63.
go back to reference H.-C. Chen, B.-H. Jiang, C.-P. Hsu, Y.-Y. Tsai, R.-J. Jeng, C.-P. Chen, and K.-T. Wong, The twisted benzo[ghi]-perylenetriimide dimer as a 3D electron acceptor for fullerene-free organic photovoltaics. Chem. A Eur. J. 24, 17590 (2018).CrossRef H.-C. Chen, B.-H. Jiang, C.-P. Hsu, Y.-Y. Tsai, R.-J. Jeng, C.-P. Chen, and K.-T. Wong, The twisted benzo[ghi]-perylenetriimide dimer as a 3D electron acceptor for fullerene-free organic photovoltaics. Chem. A Eur. J. 24, 17590 (2018).CrossRef
64.
go back to reference Y. Fan, K. Ziabrev, S. Zhang, B. Lin, S. Barlow, and S.R. Marder, Comparison of the optical and electrochemical properties of bi(perylene diimide)s linked through ortho and bay positions. ACS Omega 2, 377 (2017).CrossRef Y. Fan, K. Ziabrev, S. Zhang, B. Lin, S. Barlow, and S.R. Marder, Comparison of the optical and electrochemical properties of bi(perylene diimide)s linked through ortho and bay positions. ACS Omega 2, 377 (2017).CrossRef
65.
go back to reference H. Wang, L. Chen, and Y. Xiao, A simple molecular structure of ortho-derived perylene diimide diploid for non-fullerene organic solar cells with efficiency over 8%. J. Mater. Chem. A 5, 22288 (2017).CrossRef H. Wang, L. Chen, and Y. Xiao, A simple molecular structure of ortho-derived perylene diimide diploid for non-fullerene organic solar cells with efficiency over 8%. J. Mater. Chem. A 5, 22288 (2017).CrossRef
66.
go back to reference R. Ganesamoorthy, R. Vijayaraghavan, and P. Sakthivel, Perylene-diimide based donor–acceptor–donor typesmall-molecule acceptors for solution-processable organic solar cells. J. Electron. Mater. 46, 6784 (2017).CrossRef R. Ganesamoorthy, R. Vijayaraghavan, and P. Sakthivel, Perylene-diimide based donor–acceptor–donor typesmall-molecule acceptors for solution-processable organic solar cells. J. Electron. Mater. 46, 6784 (2017).CrossRef
67.
go back to reference H.J. Park, M.-J. Kim, J.B. Park, I.-N. Kang, U.C. Yoon, and D.-H. Hwang, New 1,7-disubstituted perylenediimides as molecular acceptors for organic solar cells. Bull. Korean Chem. Soc. 38, 484 (2017).CrossRef H.J. Park, M.-J. Kim, J.B. Park, I.-N. Kang, U.C. Yoon, and D.-H. Hwang, New 1,7-disubstituted perylenediimides as molecular acceptors for organic solar cells. Bull. Korean Chem. Soc. 38, 484 (2017).CrossRef
68.
go back to reference X. Zhang, J. Yao, and C. Zhan, Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors. Sci. China Chem. 59, 209 (2016).CrossRef X. Zhang, J. Yao, and C. Zhan, Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors. Sci. China Chem. 59, 209 (2016).CrossRef
69.
go back to reference C. Stenta, D. Molina, A. Viterisi, M.P. Montero-Rama, S. Pla, W. Cambarau, F. Fernández-Lázaro, E. Palomares, L.F. Marsal, and Á. Sastre-Santos, Diphenylphenoxy-thiophene-PDI dimers as acceptors for OPV applications with open circuit voltage approaching 1 Volt. Nanomaterials 8, 211 (2018).CrossRef C. Stenta, D. Molina, A. Viterisi, M.P. Montero-Rama, S. Pla, W. Cambarau, F. Fernández-Lázaro, E. Palomares, L.F. Marsal, and Á. Sastre-Santos, Diphenylphenoxy-thiophene-PDI dimers as acceptors for OPV applications with open circuit voltage approaching 1 Volt. Nanomaterials 8, 211 (2018).CrossRef
70.
go back to reference P. Simón Marqués, F. Tintori, J.M. Andrés Castán, P. Josse, C. Dalinot, M. Allain, G. Welch, P. Blanchard, and C. Cabanetos, Indeno[1,2-b]thiophene end-capped perylene diimide: should the 1,6-regioisomers be systematically considered as a byproduct? Sci. Rep. 10, 3262 (2020).CrossRef P. Simón Marqués, F. Tintori, J.M. Andrés Castán, P. Josse, C. Dalinot, M. Allain, G. Welch, P. Blanchard, and C. Cabanetos, Indeno[1,2-b]thiophene end-capped perylene diimide: should the 1,6-regioisomers be systematically considered as a byproduct? Sci. Rep. 10, 3262 (2020).CrossRef
71.
go back to reference M. Bolognesi, D. Gedefaw, M. Cavazzini, M. Catellani, M.R. Andersson, M. Muccini, E. Kozma, and M. Seri, Side chain modification on PDI-spirobifluorene-based molecular acceptors and its impact on organic solar cell performances. New J. Chem. 42, 18633 (2018).CrossRef M. Bolognesi, D. Gedefaw, M. Cavazzini, M. Catellani, M.R. Andersson, M. Muccini, E. Kozma, and M. Seri, Side chain modification on PDI-spirobifluorene-based molecular acceptors and its impact on organic solar cell performances. New J. Chem. 42, 18633 (2018).CrossRef
72.
go back to reference K. Fujimoto, S. Izawa, A. Takahashi, T. Inuzuka, K. Sanada, M. Sakamoto, Y. Nakayama, M. Hiramoto, and M. Takahashi, Curved perylene diimides fused with seven-membered rings. Chem. An Asian J. 16, 690 (2021).CrossRef K. Fujimoto, S. Izawa, A. Takahashi, T. Inuzuka, K. Sanada, M. Sakamoto, Y. Nakayama, M. Hiramoto, and M. Takahashi, Curved perylene diimides fused with seven-membered rings. Chem. An Asian J. 16, 690 (2021).CrossRef
73.
go back to reference Y. Cai, X. Guo, X. Sun, D. Wei, M. Yu, L. Huo, and Y. Sun, A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Sci. China Mater. 59, 427 (2016).CrossRef Y. Cai, X. Guo, X. Sun, D. Wei, M. Yu, L. Huo, and Y. Sun, A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Sci. China Mater. 59, 427 (2016).CrossRef
74.
go back to reference B. Mahlmeister, R. Renner, O. Anhalt, M. Stolte, and F. Würthner, Axially chiral bay-tetraarylated perylene bisimide dyes as non-fullerene acceptors in organic solar cells. J. Mater. Chem. C 10, 2581–2591 (2022).CrossRef B. Mahlmeister, R. Renner, O. Anhalt, M. Stolte, and F. Würthner, Axially chiral bay-tetraarylated perylene bisimide dyes as non-fullerene acceptors in organic solar cells. J. Mater. Chem. C 10, 2581–2591 (2022).CrossRef
75.
go back to reference N.D. Eastham, A.S. Dudnik, T.J. Aldrich, E.F. Manley, T.J. Fauvell, P.E. Hartnett, M.R. Wasielewski, L.X. Chen, F.S. Melkonyan, A. Facchetti, R.P.H. Chang, and T.J. Marks, Small molecule acceptor and polymer donor crystallinity and aggregation effects on microstructure templating: understanding photovoltaic response in fullerene-free solar cells. Chem. Mater. 29, 4432 (2017).CrossRef N.D. Eastham, A.S. Dudnik, T.J. Aldrich, E.F. Manley, T.J. Fauvell, P.E. Hartnett, M.R. Wasielewski, L.X. Chen, F.S. Melkonyan, A. Facchetti, R.P.H. Chang, and T.J. Marks, Small molecule acceptor and polymer donor crystallinity and aggregation effects on microstructure templating: understanding photovoltaic response in fullerene-free solar cells. Chem. Mater. 29, 4432 (2017).CrossRef
76.
go back to reference S. Işık Büyükekşi, E.B. Orman, N. Acar, A. Altındal, A.R. Özkaya, and A. Şengül, Electrochemical, photovoltaic and DFT studies on hybrid materials based on supramolecular self-assembly of a ditopic twisted perylene diimide with square-planar platinum(II)- and/or palladium(II)-2,2′:6′,2″-terpyridyl complex ions. Dyes Pigm. 161, 66 (2019).CrossRef S. Işık Büyükekşi, E.B. Orman, N. Acar, A. Altındal, A.R. Özkaya, and A. Şengül, Electrochemical, photovoltaic and DFT studies on hybrid materials based on supramolecular self-assembly of a ditopic twisted perylene diimide with square-planar platinum(II)- and/or palladium(II)-2,2′:6′,2″-terpyridyl complex ions. Dyes Pigm. 161, 66 (2019).CrossRef
77.
go back to reference T.-J. Wen, D. Wang, L. Tao, Y. Xiao, Y.-D. Tao, Y. Li, X. Lu, Y. Fang, C.-Z. Li, H. Chen, and D. Yang, Simple near-infrared electron acceptors for efficient photovoltaics and sensitive photodetectors. ACS Appl. Mater. Interfaces. 12, 39515 (2020).CrossRef T.-J. Wen, D. Wang, L. Tao, Y. Xiao, Y.-D. Tao, Y. Li, X. Lu, Y. Fang, C.-Z. Li, H. Chen, and D. Yang, Simple near-infrared electron acceptors for efficient photovoltaics and sensitive photodetectors. ACS Appl. Mater. Interfaces. 12, 39515 (2020).CrossRef
78.
go back to reference R. Po, G. Bianchi, C. Carbonera, and A. Pellegrino, “All that glisters is not gold”: an analysis of the synthetic complexity of efficient polymer donors for polymer solar cells. Macromolecules 48, 453 (2015).CrossRef R. Po, G. Bianchi, C. Carbonera, and A. Pellegrino, “All that glisters is not gold”: an analysis of the synthetic complexity of efficient polymer donors for polymer solar cells. Macromolecules 48, 453 (2015).CrossRef
79.
go back to reference E. Aluicio-Sarduy, R. Singh, Z. Kan, T. Ye, A. Baidak, A. Calloni, G. Berti, L. Duò, A. Iosifidis, S. Beaupré, M. Leclerc, H.-J. Butt, G. Floudas, and P.E. Keivanidis, Elucidating the impact of molecular packing and device architecture on the performance of nanostructured perylene diimide solar cells. ACS Appl. Mater. Interfaces. 7, 8687 (2015).CrossRef E. Aluicio-Sarduy, R. Singh, Z. Kan, T. Ye, A. Baidak, A. Calloni, G. Berti, L. Duò, A. Iosifidis, S. Beaupré, M. Leclerc, H.-J. Butt, G. Floudas, and P.E. Keivanidis, Elucidating the impact of molecular packing and device architecture on the performance of nanostructured perylene diimide solar cells. ACS Appl. Mater. Interfaces. 7, 8687 (2015).CrossRef
80.
go back to reference J.J. Dittmer, E.A. Marseglia, and R.H. Friend, Electron trapping in dye/polymer blend photovoltaic cells. Adv. Mater. 12, 1270 (2000).CrossRef J.J. Dittmer, E.A. Marseglia, and R.H. Friend, Electron trapping in dye/polymer blend photovoltaic cells. Adv. Mater. 12, 1270 (2000).CrossRef
81.
go back to reference G. Qian and Z.Y. Wang, Near-infrared organic compounds and emerging applications. Chem. An Asian J. 5, 1006 (2010).CrossRef G. Qian and Z.Y. Wang, Near-infrared organic compounds and emerging applications. Chem. An Asian J. 5, 1006 (2010).CrossRef
82.
go back to reference P. Cheng and Y. Yang, Narrowing the Band Gap: the key to high-performance organic photovoltaics. Acc. Chem. Res. 53, 1218 (2020).CrossRef P. Cheng and Y. Yang, Narrowing the Band Gap: the key to high-performance organic photovoltaics. Acc. Chem. Res. 53, 1218 (2020).CrossRef
83.
go back to reference R. Regar, R. Mishra, R. Singhal, G.D. Sharma, and J. Sankar, NIR absorbing ortho-π-extended perylene bisimide as a promising material for bulk heterojunction organic solar cells. J. Mater. Chem. A 7, 3012 (2019).CrossRef R. Regar, R. Mishra, R. Singhal, G.D. Sharma, and J. Sankar, NIR absorbing ortho-π-extended perylene bisimide as a promising material for bulk heterojunction organic solar cells. J. Mater. Chem. A 7, 3012 (2019).CrossRef
84.
go back to reference J. Ma, Y. Zhang, H. Zhang, and X. He, Near infrared absorption/emission perylenebisimide fluorophores with geometry relaxation-induced large Stokes shift. RSC Adv. 10, 35840 (2020).CrossRef J. Ma, Y. Zhang, H. Zhang, and X. He, Near infrared absorption/emission perylenebisimide fluorophores with geometry relaxation-induced large Stokes shift. RSC Adv. 10, 35840 (2020).CrossRef
85.
go back to reference M. Nakano, K. Nakano, K. Takimiya, and K. Tajima, Two isomeric perylenothiophene diimides: physicochemical properties and applications in organic semiconducting devices. J. Mater. Chem. C 7, 2267 (2019).CrossRef M. Nakano, K. Nakano, K. Takimiya, and K. Tajima, Two isomeric perylenothiophene diimides: physicochemical properties and applications in organic semiconducting devices. J. Mater. Chem. C 7, 2267 (2019).CrossRef
86.
go back to reference X. Liu, M. Hu, Y. Li, X. Zhao, Y. Zhang, Y. Hu, Z. Yuan, and Y. Chen, 1,2,4-Triazoline-3,5-dione substituted perylene diimides as near infrared acceptors for bulk heterojunction organic solar cells. Dyes Pigm. 187, 109108 (2021).CrossRef X. Liu, M. Hu, Y. Li, X. Zhao, Y. Zhang, Y. Hu, Z. Yuan, and Y. Chen, 1,2,4-Triazoline-3,5-dione substituted perylene diimides as near infrared acceptors for bulk heterojunction organic solar cells. Dyes Pigm. 187, 109108 (2021).CrossRef
Metadata
Title
Progress of Monomeric Perylene Diimide Derivatives As Non-Fullerene Acceptors for Organic Solar Cells
Authors
Linhua Zhang
Zhili Chen
Fengbo Sun
Yinuo Wang
Hanyi Bao
Xiang Gao
Zhitian Liu
Publication date
14-06-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2022
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09728-y

Other articles of this Issue 8/2022

Journal of Electronic Materials 8/2022 Go to the issue