Skip to main content
Top

2011 | OriginalPaper | Chapter

18. Prolong the Lifetime of Wireless Sensor Networks Through Mobility: A General Optimization Framework

Authors : Jun Luo, Liu Xiang

Published in: Theoretical Aspects of Distributed Computing in Sensor Networks

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Though mobility is rarely considered in traditional wireless sensor networks (WSNs), actively exploiting mobility to improve the performance of WSNs has been increasingly recognized as an important aspect of designing WSNs. This chapter focuses on exploiting mobility to improve the network lifetime of a WSN. We present a general optimization framework that is able to capture several aspects of maximizing network lifetime (MNL) involving mobile entities. Based on this framework, we conduct an in-depth analysis on each of these aspects and also describe algorithms that can be used to solve the resulting optimization problems. We also present certain numerical results where engineering insights can be acquired.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In this chapter, the words sensor node and node are used interchangeably.
 
2
These are the entities that collect data from WSNs; sometimes they are also termed base stations.
 
3
The physical features of the radio of node i are usually specified by a tuple \((P_i,R,\mu)\); here P i is the transmission power, R is the data rate, μ is the threshold (specified by the required bit error rate (BER) of a given modulation scheme that produces the rate R) such that a link \((i,j)\) may operate on rate R iff \(P_i\cdot\eta_{i,j} \ge \mu\), where \(\eta_{i,j}\) represents the fading, shadowing, and path loss effects between nodes i and j. Our model can be considered as a more generalized form of the aforementioned model, as \(e^\mathrm{T}_i = \dfrac{P_i}{R} \ge \dfrac{\mu}{R\eta_{i,j}} = c(i,j)\) is indeed the criterion to indicate the existence of link \((i,j)\). Note that, under our model, \(e^\mathrm{T}_i\) may have a unit of, for example, Joules/Bit.
 
4
This assumption is reasonable because each sensor node should be equipped with an energy source that is at least enough for the node to forward data for all nodes in one time unit. Otherwise if a node \(i:E_{i}/\left(e_{i}^\mathrm{T}+\mathrm{I}_{j\ne i}\cdot e^\mathrm{R}\right){<}\sum_{i}\lambda_{i}\) is deployed close to a static sink (assuming a randomly deployed WSN), the network lifetime can be even less than one time unit. In addition, it can be proved that an approximation ratio of \((1-\varepsilon)^{-3}\) is still achievable without this assumption.
 
5
The original work by Shi and Hou [30] is only designed for a single mobile sink. In this section, we extend their approach by combining it with MNL_ALGO presented in Sect. 18.2.4 to deal with multiple mobile sinks.
 
6
A byproduct of this change is that the cost assignment c is not needed anymore, as any link \((i,j)\) is feasible given a sufficiently high transmission energy \(e^\mathrm{T}_{i,j}\).
 
7
By aggregation, we refer to any transformation that summarizes or compresses the data acquired and received by a certain node and hence reduce the volume of the data to be sent out, e.g., [25].
 
8
As an example, the decision problem related to MNL (on-graph) is the following:
  • Instance: A set of nodes \(\mathcal{N}\), a cost assignment \(\mathbf{c}:c(i,j)=e, \forall i,j\in\mathcal{N}\), a set \(\mathcal{S}\) of sinks with \(|\mathcal{S}|{<}|\mathcal{N}|\), and for each \(i\in\mathcal{N}\), a transmission energy \(e_i^{\mathrm{T}}\), a receiving energy e R, an energy reserve E i , a rate λ i , and a positive real number t.
  • Question: Is there a sink layout schedule \(\{(\mathit{sl}_{k},t_{k})\}\) (\(\mathit{sl}_{k}\) is a vector of \([\delta^{k}_{is}]\) where \(\delta^{k}_{is}:\mathcal{N}\times\mathcal{S}\rightarrow\{0,1\}\) and \(\sum_{i}\sum_{s}\delta^{k}_{is}=|\mathcal{S}|\)) such that the lifetime \(T=\sum_{k}t_{k}\) is at least t?
This problem can be shown as NP-hard by, for example, a polynomial-time reduction from the Dominating Set on a unit disk graph [22].
 
9
Although Shi et al. [31] have proposed an approximation algorithm for BSP, using a technique similar to the one presented in Sect. 18.3.2.1 that algorithm is only pesudo-polynomial in time, as the time complexity is actually exponential in the number of base stations.
 
10
This is a special case of our general formulation, which assigns a uniform data rate to the source nodes and a zero rate to others.
 
11
The “many-to-one” data aggregation implies that, no matter how many unit of flows converge at an intermediate node, node only send one unit flow out. These are cases where special aggregation functions such as Average, Max, or Min are used.
 
Literature
1.
go back to reference I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. IEEE Communication Mag, 40(8):104–112, 2002. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. IEEE Communication Mag, 40(8):104–112, 2002.
2.
go back to reference V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics for k-median and facility location problems. SIAM Journal on Computing, 33(3): 544–562, 2004.MATHCrossRefMathSciNet V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics for k-median and facility location problems. SIAM Journal on Computing, 33(3): 544–562, 2004.MATHCrossRefMathSciNet
3.
go back to reference M.A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G.S. Sukhatme, W.J. Kaiser, M.Hansen, G.J. Pottie, M.Srivastava, and D. Estrin. Call and Response: Experiments in sampling the Environment. In: Proceedings of the 2nd ACM SenSys, Baltimore, Maryland, USA, 2004. M.A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G.S. Sukhatme, W.J. Kaiser, M.Hansen, G.J. Pottie, M.Srivastava, and D. Estrin. Call and Response: Experiments in sampling the Environment. In: Proceedings of the 2nd ACM SenSys, Baltimore, Maryland, USA, 2004.
4.
go back to reference A. Bogdanov, E. Maneva, and S. Riesenfeld. Power-aware base station positioning for sensor Networks. In: Proceedings of the 23rd IEEE INFOCOM, Hong Kong, China, 2004. A. Bogdanov, E. Maneva, and S. Riesenfeld. Power-aware base station positioning for sensor Networks. In: Proceedings of the 23rd IEEE INFOCOM, Hong Kong, China, 2004.
5.
go back to reference A. Chakrabarti, A. Sabharwal, and B. Aazhang. Using predictable observer mobility for power efficient design of sensor networks. In: Proceedings of the 2nd IEEE IPSN, Palo Alto, California, USA, 2003. A. Chakrabarti, A. Sabharwal, and B. Aazhang. Using predictable observer mobility for power efficient design of sensor networks. In: Proceedings of the 2nd IEEE IPSN, Palo Alto, California, USA, 2003.
6.
go back to reference J.-H. Chang and L. Tassiulas. Energy conserving routing in wireless Ad-hoc networks. In Proceedings of the 19th IEEE INFOCOM, Tel Aviv, Israel, 2000. J.-H. Chang and L. Tassiulas. Energy conserving routing in wireless Ad-hoc networks. In Proceedings of the 19th IEEE INFOCOM, Tel Aviv, Israel, 2000.
7.
go back to reference I. Chatzigiannakis, A. Kinalis, S. Nikoletseas, and J. Rolim. Fast and energy efficient sensor data collection by multiple mobile sinks. In: Proceedings of the 5th ACM MobiWAC, Chania, Crete Island, Greece, 2007. I. Chatzigiannakis, A. Kinalis, S. Nikoletseas, and J. Rolim. Fast and energy efficient sensor data collection by multiple mobile sinks. In: Proceedings of the 5th ACM MobiWAC, Chania, Crete Island, Greece, 2007.
8.
go back to reference D.-Z. Du, Y. Zhang, and Q. Feng. On better heuristic for euclidian steiner minimum trees. In Proceedings of the 32nd IEEE FOCS, San Juan, Puerto Rico, 1991. D.-Z. Du, Y. Zhang, and Q. Feng. On better heuristic for euclidian steiner minimum trees. In Proceedings of the 32nd IEEE FOCS, San Juan, Puerto Rico, 1991.
9.
go back to reference R.W. Floyd. Algorithm 97. Shortest path. Communications ACM, 5(6):345, 1962.CrossRef R.W. Floyd. Algorithm 97. Shortest path. Communications ACM, 5(6):345, 1962.CrossRef
10.
go back to reference L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1962.MATH L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1962.MATH
11.
go back to reference S.R. Gandham, M. Dawande, R. Prakash, and S. Venkatesan. Energy efficient schemes for wireless sensor networks with multiple mobile base stations. In: Proceedings of IEEE Globecom, San Francisco, California, USA, 2003. S.R. Gandham, M. Dawande, R. Prakash, and S. Venkatesan. Energy efficient schemes for wireless sensor networks with multiple mobile base stations. In: Proceedings of IEEE Globecom, San Francisco, California, USA, 2003.
12.
go back to reference M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, NY, 1979.MATH M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, NY, 1979.MATH
13.
go back to reference N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and other fractional packing problems. In: Proceedings of the 38th IEEE FOCS, Miami Beach, Florida, USA, 1997. N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and other fractional packing problems. In: Proceedings of the 38th IEEE FOCS, Miami Beach, Florida, USA, 1997.
14.
go back to reference M. Grossglauser and D. Tse. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4):477–486, 2002.CrossRef M. Grossglauser and D. Tse. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4):477–486, 2002.CrossRef
15.
go back to reference Y. Gu, D. Bozda, E. Ekici, F. Ozguner, and C. Lee. Partitioning-based mobile element scheduling in wireless sensor networks. In: Proceedings of the 2nd IEEE SECON, Santa Clara, California, USA, 2005. Y. Gu, D. Bozda, E. Ekici, F. Ozguner, and C. Lee. Partitioning-based mobile element scheduling in wireless sensor networks. In: Proceedings of the 2nd IEEE SECON, Santa Clara, California, USA, 2005.
16.
go back to reference H.S. Kim, T.F. Abdelzaher, and W.H. Kwon. Minimum energy asynchronous dissemination to mobile sinks in wireless sensor networks. In: Proceedings of the 1st ACM SenSys, Los Angeles, California, USA, 2003. H.S. Kim, T.F. Abdelzaher, and W.H. Kwon. Minimum energy asynchronous dissemination to mobile sinks in wireless sensor networks. In: Proceedings of the 1st ACM SenSys, Los Angeles, California, USA, 2003.
17.
go back to reference A. Kinalis and S. Nikoletseas. Adaptive redundancy for data propagation exploiting dynamic sensory mobility. In: Proceedings of the 11th ACM MSWiM, 2008. Also in Journal of Interconnection Networks (JOIN), Vancouver, British Columbia, Canada, 2010. A. Kinalis and S. Nikoletseas. Adaptive redundancy for data propagation exploiting dynamic sensory mobility. In: Proceedings of the 11th ACM MSWiM, 2008. Also in Journal of Interconnection Networks (JOIN), Vancouver, British Columbia, Canada, 2010.
18.
go back to reference L. Li, J.Y. Halpern, P. Bahl, Y.-M. Wang, and R. Wattenhofer. Analysis of a cone-based distributed topology control algorithm for wireless multi-hop networks. In: Proceedings of the 20th ACM PODC, Newport, Rhode Island, USA, 2001. L. Li, J.Y. Halpern, P. Bahl, Y.-M. Wang, and R. Wattenhofer. Analysis of a cone-based distributed topology control algorithm for wireless multi-hop networks. In: Proceedings of the 20th ACM PODC, Newport, Rhode Island, USA, 2001.
19.
go back to reference N. Li and J. Hou. Topology control in heterogeneous wireless networks: Problems and Solutions. In: Proceedings of the 23rd IEEE INFOCOM, Hong Kong, China, 2004. N. Li and J. Hou. Topology control in heterogeneous wireless networks: Problems and Solutions. In: Proceedings of the 23rd IEEE INFOCOM, Hong Kong, China, 2004.
20.
go back to reference Q. Li, M. De Rosa, and D. Rus. Distributed algorithms for guiding navigation across a sensor network. In: Proceedings of the 9th ACM MobiCom, San Diego, California, USA, 2003. Q. Li, M. De Rosa, and D. Rus. Distributed algorithms for guiding navigation across a sensor network. In: Proceedings of the 9th ACM MobiCom, San Diego, California, USA, 2003.
21.
go back to reference J. Luo and J.-P. Hubaux. Joint mobility and routing for lifetime elongation in wireless sensor networks. In: Proceedings of the 24th IEEE INFOCOM, Miami, Florida, USA, 2005. J. Luo and J.-P. Hubaux. Joint mobility and routing for lifetime elongation in wireless sensor networks. In: Proceedings of the 24th IEEE INFOCOM, Miami, Florida, USA, 2005.
22.
go back to reference J. Luo and J.-P. Hubaux. Joint sink mobility and routing to increase the lifetime of wireless sensor networks: The case of constrained mobility. IEEE/ACM Transactions on Networking, 18(3), June 2010. J. Luo and J.-P. Hubaux. Joint sink mobility and routing to increase the lifetime of wireless sensor networks: The case of constrained mobility. IEEE/ACM Transactions on Networking, 18(3), June 2010.
23.
go back to reference J. Luo, J. Panchard, M. Piórkowski, M. Grossglauser, and J.-P. Hubaux. MobiRoute: Routing towards a mobile sink for improving lifetime in sensor networks. In: Proceedings of the 2nd IEEE/ACM DCOSS, San Francisco, California, USA, 2006. J. Luo, J. Panchard, M. Piórkowski, M. Grossglauser, and J.-P. Hubaux. MobiRoute: Routing towards a mobile sink for improving lifetime in sensor networks. In: Proceedings of the 2nd IEEE/ACM DCOSS, San Francisco, California, USA, 2006.
24.
go back to reference M. Ma and Y. Yang. SenCar: An energy-efficient data gathering mechanism for large-scale multihop sensor networks. IEEE Transactions on Parallel and Distributed Systems, 18(10):1478–1488, 2007.CrossRef M. Ma and Y. Yang. SenCar: An energy-efficient data gathering mechanism for large-scale multihop sensor networks. IEEE Transactions on Parallel and Distributed Systems, 18(10):1478–1488, 2007.CrossRef
25.
go back to reference S. Madden, M.J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A tiny aggregation service for Ad-Hoc sensor networks. In: Proceedings of the 5th USENIX OSDI, Boston, MA, USA, 2002. S. Madden, M.J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A tiny aggregation service for Ad-Hoc sensor networks. In: Proceedings of the 5th USENIX OSDI, Boston, MA, USA, 2002.
26.
go back to reference G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, New York, NY, 1988.MATH G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, New York, NY, 1988.MATH
27.
go back to reference V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks. IEEE Journal on Selected Areas in Communications, 17(8):1333–1344, 1999.CrossRef V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks. IEEE Journal on Selected Areas in Communications, 17(8):1333–1344, 1999.CrossRef
28.
go back to reference R.C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling a three-tier architecture for sparse sensor networks. In: Proceedings of the 1st IEEE SNPA, Anchorage, Alska, USA, 2003. R.C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling a three-tier architecture for sparse sensor networks. In: Proceedings of the 1st IEEE SNPA, Anchorage, Alska, USA, 2003.
30.
go back to reference Y. Shi and Y.T. Hou. Theoretical results on base station movement problem for sensor Network. In Proceedings of the 27th IEEE INFOCOM, 2008. Y. Shi and Y.T. Hou. Theoretical results on base station movement problem for sensor Network. In Proceedings of the 27th IEEE INFOCOM, 2008.
31.
go back to reference Y. Shi, Y.T. Hou, and A. Efrat. Algorithm design for a class of base station location problems in sensor networks. Springer Wireless Networks, 15(1):21–38, 2009.CrossRef Y. Shi, Y.T. Hou, and A. Efrat. Algorithm design for a class of base station location problems in sensor networks. Springer Wireless Networks, 15(1):21–38, 2009.CrossRef
32.
go back to reference A. Somasundara, A. Kansal, D.D. Jea, D. Estrin, and M.B. Srivastava. Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing, 5(8):958–973, 2006.CrossRef A. Somasundara, A. Kansal, D.D. Jea, D. Estrin, and M.B. Srivastava. Controllably mobile infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing, 5(8):958–973, 2006.CrossRef
33.
go back to reference A.A. Somasundara, A. Ramamoorthy, and M.B. Srivastava. Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines. In: Proceedings of the 25th IEEE RTSS, Lisbon, Portugal, 2004. A.A. Somasundara, A. Ramamoorthy, and M.B. Srivastava. Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines. In: Proceedings of the 25th IEEE RTSS, Lisbon, Portugal, 2004.
34.
go back to reference G. Wang, G. Cao, and T. La Porta. Movement-assisted sensor deployment. IEEE Transactions on Mobile Computing, 5(6):640–652, 2006.CrossRef G. Wang, G. Cao, and T. La Porta. Movement-assisted sensor deployment. IEEE Transactions on Mobile Computing, 5(6):640–652, 2006.CrossRef
35.
go back to reference W. Wang, V. Srinivasan, and K.-C. Chua. Using mobile relays to prolong the lifetime of wireless sensor networks. In: Proceedings of the 11th ACM MobiCom, Cologne, Germany, 2005. W. Wang, V. Srinivasan, and K.-C. Chua. Using mobile relays to prolong the lifetime of wireless sensor networks. In: Proceedings of the 11th ACM MobiCom, Cologne, Germany, 2005.
36.
go back to reference G. Xing, T. Wang, W. Jia, and M. Li. Rendezvous design algorithms for wireless sensor networks with a mobile base station. In: Proceedings of the 9th ACM MobiHoc, 2008. G. Xing, T. Wang, W. Jia, and M. Li. Rendezvous design algorithms for wireless sensor networks with a mobile base station. In: Proceedings of the 9th ACM MobiHoc, 2008.
37.
go back to reference F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A Two-Tier data dissemination model for large-scale wireless sensor networks. In: Proceedings of the 8th ACM MobiCom, Atlanta, Georgia, USA, 2002. F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A Two-Tier data dissemination model for large-scale wireless sensor networks. In: Proceedings of the 8th ACM MobiCom, Atlanta, Georgia, USA, 2002.
Metadata
Title
Prolong the Lifetime of Wireless Sensor Networks Through Mobility: A General Optimization Framework
Authors
Jun Luo
Liu Xiang
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-14849-1_18

Premium Partner