Skip to main content
Top

2025 | OriginalPaper | Chapter

PRONTO: Prompt-Based Detection of Semantic Containment Patterns in MLMs

Authors : Alessandro De Bellis, Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio

Published in: The Semantic Web – ISWC 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Masked Language Models (MLMs) like BERT and RoBERTa excel at predicting missing words based on context, but their ability to understand deeper semantic relationships is still being assessed. While MLMs have demonstrated impressive capabilities, it is still unclear if they merely exploit statistical word co-occurrence or if they can capture a deeper, structured understanding of meaning, similar to how knowledge is organized in ontologies. This is a topic of increasing interest, with researchers seeking to understand how MLMs might internally represent concepts like ontological classes and semantic containment relations (e.g., sub-class and instance-of). Unveiling this knowledge could have significant implications for Semantic Web applications, but it necessitates a profound understanding of how these models express such relationships. This work investigates whether MLMs can understand these relationships, presenting a novel approach to automatically leverage the predictions returned by MLMs to discover semantic containment relations in unstructured text. We achieve this by constructing a verbalizer, a system that translates the model’s internal predictions into classification labels. Through a comprehensive probing procedure, we assess the method’s effectiveness, reliability, and interpretability. Our findings demonstrate a key strength of MLMs: their ability to capture semantic containment relationships. These insights bring significant implications for MLM application in ontology construction and aligning text data with ontologies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For all the adopted PLMs, we employ the pre-trained checkpoints available at https://​huggingface.​co/​.
 
Literature
1.
go back to reference Anelli, V.W., Biancofiore, G.M., Bellis, A.D., Noia, T.D., Sciascio, E.D.: Interpretability of BERT latent space through knowledge graphs. In: Hasan, M.A., Xiong, L. (eds.) Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17-21 October 2022, pp. 3806–3810. ACM (2022). https://doi.org/10.1145/3511808.3557617 Anelli, V.W., Biancofiore, G.M., Bellis, A.D., Noia, T.D., Sciascio, E.D.: Interpretability of BERT latent space through knowledge graphs. In: Hasan, M.A., Xiong, L. (eds.) Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17-21 October 2022, pp. 3806–3810. ACM (2022). https://​doi.​org/​10.​1145/​3511808.​3557617
2.
go back to reference Anelli, V.W., Noia, T.D., Lops, P., Sciascio, E.D.: Feature factorization for top-n recommendation: From item rating to features relevance. In: Zheng, Y., Pan, W., Sahebi, S.S., Fernández, I. (eds.) Proceedings of the 1st Workshop on Intelligent Recommender Systems by Knowledge Transfer & Learning co-located with ACM Conference on Recommender Systems (RecSys 2017), Como, Italy, August 27, 2017. CEUR Workshop Proceedings, vol. 1887, pp. 16–21. CEUR-WS.org (2017), https://ceur-ws.org/Vol-1887/paper3.pdf Anelli, V.W., Noia, T.D., Lops, P., Sciascio, E.D.: Feature factorization for top-n recommendation: From item rating to features relevance. In: Zheng, Y., Pan, W., Sahebi, S.S., Fernández, I. (eds.) Proceedings of the 1st Workshop on Intelligent Recommender Systems by Knowledge Transfer & Learning co-located with ACM Conference on Recommender Systems (RecSys 2017), Como, Italy, August 27, 2017. CEUR Workshop Proceedings, vol. 1887, pp. 16–21. CEUR-WS.org (2017), https://​ceur-ws.​org/​Vol-1887/​paper3.​pdf
4.
go back to reference Bałazy, K., Łukasz Struski, Śmieja, M., Tabor, J.: r-softmax: Generalized softmax with controllable sparsity rate (2023) Bałazy, K., Łukasz Struski, Śmieja, M., Tabor, J.: r-softmax: Generalized softmax with controllable sparsity rate (2023)
6.
go back to reference Chen, X., Zhang, N., Xie, X., Deng, S., Yao, Y., Tan, C., Huang, F., Si, L., Chen, H.: Knowprompt: Knowledge-aware prompt-tuning with synergistic optimization for relation extraction. In: Proceedings of the ACM Web Conference 2022, WWW 2022, pp. 2778-2788. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3485447.3511998 Chen, X., Zhang, N., Xie, X., Deng, S., Yao, Y., Tan, C., Huang, F., Si, L., Chen, H.: Knowprompt: Knowledge-aware prompt-tuning with synergistic optimization for relation extraction. In: Proceedings of the ACM Web Conference 2022, WWW 2022, pp. 2778-2788. Association for Computing Machinery, New York (2022). https://​doi.​org/​10.​1145/​3485447.​3511998
7.
go back to reference De Bellis, A.: Structuring the unstructured: an llm-guided transition. In: d’Amato, C., Pan, J.Z. (eds.) Proceedings of the Doctoral Consortium at ISWC 2023 co-located with 22nd International Semantic Web Conference (ISWC 2023), Athens, Greece, 7 November 2023. CEUR Workshop Proceedings, vol. 3678. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3678/paper12.pdf De Bellis, A.: Structuring the unstructured: an llm-guided transition. In: d’Amato, C., Pan, J.Z. (eds.) Proceedings of the Doctoral Consortium at ISWC 2023 co-located with 22nd International Semantic Web Conference (ISWC 2023), Athens, Greece, 7 November 2023. CEUR Workshop Proceedings, vol. 3678. CEUR-WS.org (2023). https://​ceur-ws.​org/​Vol-3678/​paper12.​pdf
8.
go back to reference De Bellis, A., et al.: Semantic interpretation of BERT embeddings with knowledge graphs. In: Calvanese, D., et al. (eds.) Proceedings of the 31st Symposium of Advanced Database Systems, Galzingano Terme, Italy, July 2nd to 5th, 2023. CEUR Workshop Proceedings, vol. 3478, pp. 181–191. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3478/paper69.pdf De Bellis, A., et al.: Semantic interpretation of BERT embeddings with knowledge graphs. In: Calvanese, D., et al. (eds.) Proceedings of the 31st Symposium of Advanced Database Systems, Galzingano Terme, Italy, July 2nd to 5th, 2023. CEUR Workshop Proceedings, vol. 3478, pp. 181–191. CEUR-WS.org (2023). https://​ceur-ws.​org/​Vol-3478/​paper69.​pdf
9.
go back to reference Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (Jun 2019). https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423 Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (Jun 2019). https://​doi.​org/​10.​18653/​v1/​N19-1423. https://​aclanthology.​org/​N19-1423
13.
go back to reference Huang, J., Meng, Y., Han, J.: Few-shot fine-grained entity typing with automatic label interpretation and instance generation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 605-614. KDD ’22, Association for Computing Machinery, New York(2022). https://doi.org/10.1145/3534678.3539443 Huang, J., Meng, Y., Han, J.: Few-shot fine-grained entity typing with automatic label interpretation and instance generation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 605-614. KDD ’22, Association for Computing Machinery, New York(2022). https://​doi.​org/​10.​1145/​3534678.​3539443
18.
go back to reference Liu, Y., et al.: Roberta: A robustly optimized bert pretraining approach (2019) Liu, Y., et al.: Roberta: A robustly optimized bert pretraining approach (2019)
20.
go back to reference Petroni, F., et al.: Language models as knowledge bases? In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473. Association for Computational Linguistics, Hong Kong, China (Nov 2019). https://doi.org/10.18653/v1/D19-1250, https://aclanthology.org/D19-1250 Petroni, F., et al.: Language models as knowledge bases? In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473. Association for Computational Linguistics, Hong Kong, China (Nov 2019). https://​doi.​org/​10.​18653/​v1/​D19-1250, https://​aclanthology.​org/​D19-1250
22.
go back to reference Qin, G., Eisner, J.: Learning how to ask: querying LMs with mixtures of soft prompts. In: Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y. (eds.) Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 5203–5212. Association for Computational Linguistics, Online (Jun 2021). https://doi.org/10.18653/v1/2021.naacl-main.410 Qin, G., Eisner, J.: Learning how to ask: querying LMs with mixtures of soft prompts. In: Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y. (eds.) Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 5203–5212. Association for Computational Linguistics, Online (Jun 2021). https://​doi.​org/​10.​18653/​v1/​2021.​naacl-main.​410
Metadata
Title
PRONTO: Prompt-Based Detection of Semantic Containment Patterns in MLMs
Authors
Alessandro De Bellis
Vito Walter Anelli
Tommaso Di Noia
Eugenio Di Sciascio
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-77850-6_13

Premium Partner