Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

7. Propagation and Interaction of Nonlinear Waves in Generalized Continua

Authors : Vladimir I. Erofeev, Igor S. Pavlov

Published in: Structural Modeling of Metamaterials

Publisher: Springer International Publishing

Abstract

The main goal of the final chapter of the monograph is to study the features of the propagation of nonlinear elastic waves in metamaterials and constructions made of them.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Gerasimov, S.I., Erofeev, V.I., Soldatov, I.N.: Wave Processes in Continuous Media. Publishing of the Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, Sarov (2012) (in Russian) Gerasimov, S.I., Erofeev, V.I., Soldatov, I.N.: Wave Processes in Continuous Media. Publishing of the Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, Sarov (2012) (in Russian)
2.
go back to reference Bobrovnitskii, YuI: An acoustic metamaterial with unusual wave properties. Acoust. Phys. 60(4), 371–378 (2014) Bobrovnitskii, YuI: An acoustic metamaterial with unusual wave properties. Acoust. Phys. 60(4), 371–378 (2014)
3.
go back to reference Bobrovnitskii, YuI: Models and general wave properties of two-dimensional acoustic metamaterials and media. Acoust. Phys. 61(3), 255–264 (2015) Bobrovnitskii, YuI: Models and general wave properties of two-dimensional acoustic metamaterials and media. Acoust. Phys. 61(3), 255–264 (2015)
4.
go back to reference Bobrovnitskii, YuI, Tomilina, T.M.: Sound absorption and metamaterials: a review. Acoust. Phys. 64(5), 519–526 (2018) Bobrovnitskii, YuI, Tomilina, T.M.: Sound absorption and metamaterials: a review. Acoust. Phys. 64(5), 519–526 (2018)
5.
go back to reference Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Rayleigh and Love surface waves in isotropic media with negative Poisson’s ratio. Mech. Solids 49(4), 422–434 (2014) Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Rayleigh and Love surface waves in isotropic media with negative Poisson’s ratio. Mech. Solids 49(4), 422–434 (2014)
6.
go back to reference Indeytsev, D.A., Naumov, V.N., Semenov, B.N.: Dynamic effects in materials of complex structure. Mech. Solids 42(5), 672–691 (2007) Indeytsev, D.A., Naumov, V.N., Semenov, B.N.: Dynamic effects in materials of complex structure. Mech. Solids 42(5), 672–691 (2007)
9.
go back to reference Savin, G.N., Lukashev, A.A., Lysko, E.M.: Propagation of elastic waves in a solid with microstructure. Prikl. Mekh. (Appl. Mech.) 6(7), 48–52 (1970) (in Russian) Savin, G.N., Lukashev, A.A., Lysko, E.M.: Propagation of elastic waves in a solid with microstructure. Prikl. Mekh. (Appl. Mech.) 6(7), 48–52 (1970) (in Russian)
10.
go back to reference Savin, G.N., Lukashev, A.A., Lysko, E.M., Veremeenko, S.V., Agas’ev, G.G.: Propagation of elastic waves in the Cosserat continuum with constrained particle rotation. Prikl. Mekh. (Appl. Mech.) 6(6), 37–40 (1970) (in Russian) Savin, G.N., Lukashev, A.A., Lysko, E.M., Veremeenko, S.V., Agas’ev, G.G.: Propagation of elastic waves in the Cosserat continuum with constrained particle rotation. Prikl. Mekh. (Appl. Mech.) 6(6), 37–40 (1970) (in Russian)
11.
go back to reference Muhlhaus, H.-B., Oka, F.: Dispersion and wave propagation in discrete and continuous models for granular materials. Int. J. Solids Struct. 33(19), 2841–2858 (1996) Muhlhaus, H.-B., Oka, F.: Dispersion and wave propagation in discrete and continuous models for granular materials. Int. J. Solids Struct. 33(19), 2841–2858 (1996)
12.
go back to reference Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001) Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001)
13.
go back to reference Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: Analysis of body waves and eigenmodes. J. Sound Vib. 240(1), 1–18 (2001) Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: Analysis of body waves and eigenmodes. J. Sound Vib. 240(1), 1–18 (2001)
14.
go back to reference Porubov, A.V.: Amplification of Nonlinear Strain Waves in Solids, p. 213p. World Scientific, Singapore (2003) Porubov, A.V.: Amplification of Nonlinear Strain Waves in Solids, p. 213p. World Scientific, Singapore (2003)
15.
go back to reference Pelinovsky, D.E., Stepanyants, Yu.A.: Self-focusing instability of plane solitons and chains of two-dimensional solitons in positive-dispersion media. J. Exp. Theor. Phys. 77, 602–614 (1993) Pelinovsky, D.E., Stepanyants, Yu.A.: Self-focusing instability of plane solitons and chains of two-dimensional solitons in positive-dispersion media. J. Exp. Theor. Phys. 77, 602–614 (1993)
16.
go back to reference Erofeev, V.I., Kazhaev, V.V., Pavlov, I.S.: Nonlinear localized strain waves in a 2D medium with microstructure. In: H. Altenbach et al. (eds.) Generalized Continua as Models for Materials. Advanced Structured Materials, vol. 91, pp. 91–110. Springer, Berlin, Heidelberg (2013) Erofeev, V.I., Kazhaev, V.V., Pavlov, I.S.: Nonlinear localized strain waves in a 2D medium with microstructure. In: H. Altenbach et al. (eds.) Generalized Continua as Models for Materials. Advanced Structured Materials, vol. 91, pp. 91–110. Springer, Berlin, Heidelberg (2013)
17.
go back to reference Erofeev, V.I., Zemlyanukhin, A.I., Catcon, V.M., Sheshenin, S.F. Nonlinear waves in the Cosserat continuum with constrained rotation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua. Advanced Structured Materials, vol. 7, pp. 221–230. Springer, Heidelberg, Dordrecht, London, New York (2011) Erofeev, V.I., Zemlyanukhin, A.I., Catcon, V.M., Sheshenin, S.F. Nonlinear waves in the Cosserat continuum with constrained rotation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua. Advanced Structured Materials, vol. 7, pp. 221–230. Springer, Heidelberg, Dordrecht, London, New York (2011)
18.
go back to reference Press, W.H., Teukolsky, S.L., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 680 p. Cambridge University Press, Cambridge (1992) Press, W.H., Teukolsky, S.L., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 680 p. Cambridge University Press, Cambridge (1992)
19.
go back to reference Potapov, A.I., Pavlov, I.S., Maugin, G.A.: Nonlinear wave interactions in 1D crystals with complex lattice. Wave Mot. 29, 297–312 (1999) Potapov, A.I., Pavlov, I.S., Maugin, G.A.: Nonlinear wave interactions in 1D crystals with complex lattice. Wave Mot. 29, 297–312 (1999)
20.
go back to reference Erofeev, V.I., Pavlov, I.S.: Self-modulation of shear waves of deformation propagating in a one-dimensional granular medium with internal stresses. Math. Mech. Solids 21(1), 60–72 (2016) Erofeev, V.I., Pavlov, I.S.: Self-modulation of shear waves of deformation propagating in a one-dimensional granular medium with internal stresses. Math. Mech. Solids 21(1), 60–72 (2016)
22.
go back to reference Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing, New Jersey, London, Singapore, Hong Kong, Bangalore, Taipei (2003) Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing, New Jersey, London, Singapore, Hong Kong, Bangalore, Taipei (2003)
23.
go back to reference Erofeev, V.I., Kazhaev, V.V., Pavlov, I.S.: Inelastic interaction and splitting of strain solitons propagating in a one-dimensional granular medium with internal stress. Adv. Struct. Mater. 42, 145–162 (2016) Erofeev, V.I., Kazhaev, V.V., Pavlov, I.S.: Inelastic interaction and splitting of strain solitons propagating in a one-dimensional granular medium with internal stress. Adv. Struct. Mater. 42, 145–162 (2016)
24.
go back to reference Vanin, G.A.: Gradient theory of elasticity. Mech. Solids 1, 46–53 (1999) Vanin, G.A.: Gradient theory of elasticity. Mech. Solids 1, 46–53 (1999)
25.
go back to reference Rabinovich, M.I., Trubetskov, D.I.: Introduction to the Theory of Oscillations and Waves. SIC “Regular and Chaotic Dynamics”, Moscow (2000) Rabinovich, M.I., Trubetskov, D.I.: Introduction to the Theory of Oscillations and Waves. SIC “Regular and Chaotic Dynamics”, Moscow (2000)
26.
go back to reference Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974) Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)
27.
go back to reference Erofeev, V.I., Kazhaev, V.V., Pavlov, I.S.: Splitting of strain solitons upon their interaction in the auxetic rod. In: Matveenko, V.P. et al. (eds.) Dynamics and Control of Advanced Structures and Machines, pp. 57–64. Springer, Cham (2019) Erofeev, V.I., Kazhaev, V.V., Pavlov, I.S.: Splitting of strain solitons upon their interaction in the auxetic rod. In: Matveenko, V.P. et al. (eds.) Dynamics and Control of Advanced Structures and Machines, pp. 57–64. Springer, Cham (2019)
28.
go back to reference Fozdar, D.Y., Soman, P., Lee, J.W., Han, L.-H., Chen, S.: Three-dimensional polymer constructs exhibiting a tunable negative Poisson’s ratio. Adv. Funct. Mater. 21(14), 2712–2720 (2011) Fozdar, D.Y., Soman, P., Lee, J.W., Han, L.-H., Chen, S.: Three-dimensional polymer constructs exhibiting a tunable negative Poisson’s ratio. Adv. Funct. Mater. 21(14), 2712–2720 (2011)
29.
go back to reference Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7(9), 5111–5129 (2017) Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7(9), 5111–5129 (2017)
30.
go back to reference Lim, T.-C.: Auxetic Materials and Structures. Engineering Materials, 588 p. Singapore, Heidelberg, New York, Dordrecht, London (2015) Lim, T.-C.: Auxetic Materials and Structures. Engineering Materials, 588 p. Singapore, Heidelberg, New York, Dordrecht, London (2015)
31.
go back to reference Bilski, M., Wojciechowski, K.W.: Tailoring Poisson’s ratio by introducing auxetic layers. Phys. Status Solidi B 253(7), 1318–1323 (2016) Bilski, M., Wojciechowski, K.W.: Tailoring Poisson’s ratio by introducing auxetic layers. Phys. Status Solidi B 253(7), 1318–1323 (2016)
32.
go back to reference Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Longitudinal elastic tension of two-layered plates from isotropic auxetics–nonauxetics and cubic crystals. Eur. J. Mech. A: Solids 63, 122–127 (2017) Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Longitudinal elastic tension of two-layered plates from isotropic auxetics–nonauxetics and cubic crystals. Eur. J. Mech. A: Solids 63, 122–127 (2017)
33.
go back to reference Jopek, H.: Computer simulation of bending a fibrous composite reinforced with auxetic phase. Phys. Status Solidi B 253(7), 1369–1377 (2016) Jopek, H.: Computer simulation of bending a fibrous composite reinforced with auxetic phase. Phys. Status Solidi B 253(7), 1369–1377 (2016)
34.
go back to reference Zhou, L., Jiang, H.: Auxetic composites made of 3D textile structure and polyurethane foam. Phys. Status Solidi B 253(7), 1331–1341 (2016) Zhou, L., Jiang, H.: Auxetic composites made of 3D textile structure and polyurethane foam. Phys. Status Solidi B 253(7), 1331–1341 (2016)
35.
go back to reference Alderson, A.: A triumph of lateral thought. Chemistry & Industry, vol. 17, pp. 384–391 (1999) Alderson, A.: A triumph of lateral thought. Chemistry & Industry, vol. 17, pp. 384–391 (1999)
36.
go back to reference Evans, K.E., Alderson, A.: Auxetic materials: Functional materials and structures from lateral thinking. Adv. Mater. 17, 617–628 (2000) Evans, K.E., Alderson, A.: Auxetic materials: Functional materials and structures from lateral thinking. Adv. Mater. 17, 617–628 (2000)
37.
go back to reference Lakes, R.S.: Foam structures with a negative Poisson’s ratio. Science 235(4792), 1038–1040 (1987) Lakes, R.S.: Foam structures with a negative Poisson’s ratio. Science 235(4792), 1038–1040 (1987)
38.
go back to reference Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Auxetic mechanics of crystalline materials. Mech. Solids 45(4), 529–545 (2010) Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Auxetic mechanics of crystalline materials. Mech. Solids 45(4), 529–545 (2010)
39.
go back to reference Alderson, K.L., Simkins, V.R., Coenen, V.L., Davies, P.J., Alderson, A., Evans, K.E.: How to make auxetic fibre reinforced composites. Phys. Status Solidi B 242(3), 509–518 (2005) Alderson, K.L., Simkins, V.R., Coenen, V.L., Davies, P.J., Alderson, A., Evans, K.E.: How to make auxetic fibre reinforced composites. Phys. Status Solidi B 242(3), 509–518 (2005)
40.
go back to reference Baughman, R.H., Shacklette, J.M., Zakhidov, A.A., Stafström, S.: Negative Poisson’s ratios as a common feature of cubic metals. Nature 392, 362–365 (1998) Baughman, R.H., Shacklette, J.M., Zakhidov, A.A., Stafström, S.: Negative Poisson’s ratios as a common feature of cubic metals. Nature 392, 362–365 (1998)
41.
go back to reference Branka, A.C., Heyes, D.M., Mackowiak, Sz., Pieprzyk, S., Wojciechowski, K.W.: Cubic materials in different auxetic regions: linking microscopic to macroscopic formulations. Phys. Status Solidi B 249(7), 1373–1378 (2012) Branka, A.C., Heyes, D.M., Mackowiak, Sz., Pieprzyk, S., Wojciechowski, K.W.: Cubic materials in different auxetic regions: linking microscopic to macroscopic formulations. Phys. Status Solidi B 249(7), 1373–1378 (2012)
42.
go back to reference Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Average Poisson’s ratio for crystals. Hexagonal auxetics. Lett. Mater. 3(1), 7–11 (2013) Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Average Poisson’s ratio for crystals. Hexagonal auxetics. Lett. Mater. 3(1), 7–11 (2013)
43.
go back to reference Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Classification of cubic auxetics. Phys. Status Solidi B 250(10), 2038–2043 (2013) Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Classification of cubic auxetics. Phys. Status Solidi B 250(10), 2038–2043 (2013)
44.
go back to reference Krasavin, V.V., Krasavin, A.V.: Auxetic properties of cubic metal single crystals. Phys. Status Solidi B 251(11), 2314–2320 (2014) Krasavin, V.V., Krasavin, A.V.: Auxetic properties of cubic metal single crystals. Phys. Status Solidi B 251(11), 2314–2320 (2014)
45.
go back to reference Dinh, T.B., Long, V.C., Xuan, K.D., Wojciechowski, K.W.: Computer simulation of solitary waves in a common or auxetic elastic rod with both quadratic and cubic nonlinearities. Phys. Status Solidi B 249(7), 1386–1392 (2012) Dinh, T.B., Long, V.C., Xuan, K.D., Wojciechowski, K.W.: Computer simulation of solitary waves in a common or auxetic elastic rod with both quadratic and cubic nonlinearities. Phys. Status Solidi B 249(7), 1386–1392 (2012)
46.
go back to reference Drzewiecki, A.: Rayleigh-type wave propagation in an auxetic dielectric. J. Mech. Mater. Struct. 7(3), 277–284 (2012) Drzewiecki, A.: Rayleigh-type wave propagation in an auxetic dielectric. J. Mech. Mater. Struct. 7(3), 277–284 (2012)
47.
go back to reference Koenders, M.A.: Wave propagation through elastic granular and granular auxetic materials. Phys. Status Solidi B 246(9), 2083–2088 (2009) Koenders, M.A.: Wave propagation through elastic granular and granular auxetic materials. Phys. Status Solidi B 246(9), 2083–2088 (2009)
48.
go back to reference Kołat, P., Maruszewski, B.T., Tretiakov, K.V., Wojciechowski, K.W.: Solitary waves in auxetic rods. Phys. Status Solidi B 248(1), 148–157 (2011) Kołat, P., Maruszewski, B.T., Tretiakov, K.V., Wojciechowski, K.W.: Solitary waves in auxetic rods. Phys. Status Solidi B 248(1), 148–157 (2011)
49.
go back to reference Kołat, P., Maruszewski, B.T., Wojciechowski, K.W.: Solitary waves in auxetic plates. J. Non-Cryst. Solids 356(37–40), 2001–2009 (2010) Kołat, P., Maruszewski, B.T., Wojciechowski, K.W.: Solitary waves in auxetic plates. J. Non-Cryst. Solids 356(37–40), 2001–2009 (2010)
50.
go back to reference Lim, T.-C., Cheang, P., Scarpa, F.: Wave motion in auxetic solids. Phys. Status Solidi B 251(2), 388–396 (2014) Lim, T.-C., Cheang, P., Scarpa, F.: Wave motion in auxetic solids. Phys. Status Solidi B 251(2), 388–396 (2014)
51.
go back to reference Malischewski, P.G., Lorato, A., Scarpa, F., Ruzzene, M.: Unusual behaviour of wave propagation in auxetic structures: P-waves on free surface and S-waves in chiral lattices with piezoelectrics. Phys. Status Solidi B 249(7), 1339–1346 (2012) Malischewski, P.G., Lorato, A., Scarpa, F., Ruzzene, M.: Unusual behaviour of wave propagation in auxetic structures: P-waves on free surface and S-waves in chiral lattices with piezoelectrics. Phys. Status Solidi B 249(7), 1339–1346 (2012)
52.
go back to reference Mikhailov, D.N., Nikolaevskiy, V.N.: Tectonic waves of the rotational type generating seismic signals. Izv. Phys. Solid Earth 36, 895 (2000) Mikhailov, D.N., Nikolaevskiy, V.N.: Tectonic waves of the rotational type generating seismic signals. Izv. Phys. Solid Earth 36, 895 (2000)
53.
go back to reference Erofeev, V.I., Kazhaev, V.V., Semerikova, N.P.: Waves in Rods. Dispersion. Dissipation. Nonlinearity, 208 p. Fizmatlit, Moscow (2002) (in Russian) Erofeev, V.I., Kazhaev, V.V., Semerikova, N.P.: Waves in Rods. Dispersion. Dissipation. Nonlinearity, 208 p. Fizmatlit, Moscow (2002) (in Russian)
54.
go back to reference Grigolyuk, E.I., Selezov, I.T.: Nonclassical theories of rod, plate, and shell vibrations. In: Results in Science and Technology. Mechanics of Deformable Solids, vol. 5. VINITI, Moscow (1973) (in Russian) Grigolyuk, E.I., Selezov, I.T.: Nonclassical theories of rod, plate, and shell vibrations. In: Results in Science and Technology. Mechanics of Deformable Solids, vol. 5. VINITI, Moscow (1973) (in Russian)
55.
go back to reference Andrianov, I.V., Awrejcewicz, J., Danishevskyy, V.V., Markert, B.: Influence of geometric and physical nonlinearities on the internal resonances of a finite continuous rod with a microstructure. J. Sound Vib. 386, 359–371 (2017) Andrianov, I.V., Awrejcewicz, J., Danishevskyy, V.V., Markert, B.: Influence of geometric and physical nonlinearities on the internal resonances of a finite continuous rod with a microstructure. J. Sound Vib. 386, 359–371 (2017)
56.
go back to reference Erofeev, V.I., Klyueva, N.V.: Solitons and nonlinear periodic strain waves in rods, plates, and shells (a review). Acoust. Phys. 48(6), 643–655 (2002) Erofeev, V.I., Klyueva, N.V.: Solitons and nonlinear periodic strain waves in rods, plates, and shells (a review). Acoust. Phys. 48(6), 643–655 (2002)
57.
go back to reference Erofeev, V.I., Kazhaev, V.V., Lisenkova, E.E., Semerikova, N.P.: Nonsinusoidal bending waves in Timoshenko beam lying on nonlinear elastic foundation. J. Mach. Manuf. Reliab. 37(3), 230–235 (2008) Erofeev, V.I., Kazhaev, V.V., Lisenkova, E.E., Semerikova, N.P.: Nonsinusoidal bending waves in Timoshenko beam lying on nonlinear elastic foundation. J. Mach. Manuf. Reliab. 37(3), 230–235 (2008)
58.
go back to reference Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York and London (1984) Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York and London (1984)
59.
go back to reference Dodd, R.K., Eilbek, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982) Dodd, R.K., Eilbek, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)
60.
go back to reference Scott, A.C., Chu, F.Y.F., McLaughlin, D.: The soliton: a new concept in applied science. Proc. IEEE 61, 1443–1483 (1973) Scott, A.C., Chu, F.Y.F., McLaughlin, D.: The soliton: a new concept in applied science. Proc. IEEE 61, 1443–1483 (1973)
61.
go back to reference Kadomtsev, B.B.: Collective Phenomena in Plasma. Fizmatlit Publishing House, Moscow (1976). (in Russian) Kadomtsev, B.B.: Collective Phenomena in Plasma. Fizmatlit Publishing House, Moscow (1976). (in Russian)
62.
go back to reference Lonngren, K.: Experimental investigations of solitons in nonlinear dispersive transmission lines. In: Lonngren, K., Scott, A.C. (eds.) Solitons in Actions, pp. 138–162. Academic, New York (1978) Lonngren, K.: Experimental investigations of solitons in nonlinear dispersive transmission lines. In: Lonngren, K., Scott, A.C. (eds.) Solitons in Actions, pp. 138–162. Academic, New York (1978)
63.
go back to reference Ostrovsky, L.A., Papko, V.V., Pelinovsky, E.N.: Solitary electromagnetic waves in nonlinear lines. Radiophys. Quantum Electron. 15, 438–446 (1972) Ostrovsky, L.A., Papko, V.V., Pelinovsky, E.N.: Solitary electromagnetic waves in nonlinear lines. Radiophys. Quantum Electron. 15, 438–446 (1972)
64.
go back to reference Abdullow, Kh.O., Bogoloubsku, I.L., Makhankov, V.G.: One more example of inelastic soliton interaction. Phys. Lett. A 56, 427–428 (1976) Abdullow, Kh.O., Bogoloubsku, I.L., Makhankov, V.G.: One more example of inelastic soliton interaction. Phys. Lett. A 56, 427–428 (1976)
65.
go back to reference Potapov, A.I., Vesnitsky, A.I.: Interaction of solitary waves under head-on collision. Experimental investigation. Wave Mot. 19, 29–35 (1994) Potapov, A.I., Vesnitsky, A.I.: Interaction of solitary waves under head-on collision. Experimental investigation. Wave Mot. 19, 29–35 (1994)
66.
go back to reference Erofeev, V.I., Gerasimov, S.I., Kazhaev, V.V., Pavlov, I.S.: Splitting of strain solitons upon their interaction. Bull. Russ. Acad. Sci.: Phys. 80(10), 1203–1208 (2016) Erofeev, V.I., Gerasimov, S.I., Kazhaev, V.V., Pavlov, I.S.: Splitting of strain solitons upon their interaction. Bull. Russ. Acad. Sci.: Phys. 80(10), 1203–1208 (2016)
67.
go back to reference Askes, H., Metrikine, A.V.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: Generic formulation. Eur. J. Mech. A/Solids 21(4), 573–588 (2002) Askes, H., Metrikine, A.V.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: Generic formulation. Eur. J. Mech. A/Solids 21(4), 573–588 (2002)
68.
go back to reference Erofeev, V.I., Leontyeva, A.V., Malkhanov, A.O., Pavlov, I.S.: Structural modeling of nonlinear localized strain waves in generalized continua. In: Wolfgang, H., Altenbach, H., Muller, W.H., Abali, B.E. (eds.) Advanced Structured Materials. 2019. High Gradient Materials and Related Generalized Continua, pp. 55–68. Springer, Cham, Switzerland Erofeev, V.I., Leontyeva, A.V., Malkhanov, A.O., Pavlov, I.S.: Structural modeling of nonlinear localized strain waves in generalized continua. In: Wolfgang, H., Altenbach, H., Muller, W.H., Abali, B.E. (eds.) Advanced Structured Materials. 2019. High Gradient Materials and Related Generalized Continua, pp. 55–68. Springer, Cham, Switzerland
69.
go back to reference Bogoliubov, N.N., Mitropolsky, YuA: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach, New York (1961) Bogoliubov, N.N., Mitropolsky, YuA: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach, New York (1961)
70.
go back to reference Bayuk, I., Ammerman, M., Chesnokov, E.: Upscaling of elastic properties of anisotropic sedimentary rocks. Geophys. J. Int. 172, 842–860 (2008) Bayuk, I., Ammerman, M., Chesnokov, E.: Upscaling of elastic properties of anisotropic sedimentary rocks. Geophys. J. Int. 172, 842–860 (2008)
71.
go back to reference Yalaev, T., Bayuk, I., Tarelko, N., Abashkin, A.: Connection of elastic and thermal properties of Bentheimer sandstone using effective medium theory (rock physics). In: ARMA-2016-128. 50th U.S. Rock Mechanics/Geomechanics Symposium, 26–29 June, Houston, TX, pp. 1–7 (2016) Yalaev, T., Bayuk, I., Tarelko, N., Abashkin, A.: Connection of elastic and thermal properties of Bentheimer sandstone using effective medium theory (rock physics). In: ARMA-2016-128. 50th U.S. Rock Mechanics/Geomechanics Symposium, 26–29 June, Houston, TX, pp. 1–7 (2016)
72.
go back to reference Dubinya, N., Tikhotsky, S., Bayuk, I., Beloborodov, D., Krasnova, M., Makarova, A., Rusina, O., Fokin, I.: Prediction of physical-mechanical properties and in-situ stress state of hydrocarbon reservoirs from experimental data and theoretical modeling. In: SPE Russian Petroleum Technology Conference (SPE-187823-MS), pp. 1–15 (2017) Dubinya, N., Tikhotsky, S., Bayuk, I., Beloborodov, D., Krasnova, M., Makarova, A., Rusina, O., Fokin, I.: Prediction of physical-mechanical properties and in-situ stress state of hydrocarbon reservoirs from experimental data and theoretical modeling. In: SPE Russian Petroleum Technology Conference (SPE-187823-MS), pp. 1–15 (2017)
73.
go back to reference Rudenko, O.V.: Giant nonlinearities in structurally inhomogeneous media and the fundamentals of nonlinear acoustic diagnostic techniques. Phys. Uspekhi 49, 69–87 (2006) Rudenko, O.V.: Giant nonlinearities in structurally inhomogeneous media and the fundamentals of nonlinear acoustic diagnostic techniques. Phys. Uspekhi 49, 69–87 (2006)
74.
go back to reference Nikitina, N.E.: Acoustoelasticity. Experience of practical application. TALAM, Nizhny Novgorod, 208 p (2005) (in Russian) Nikitina, N.E.: Acoustoelasticity. Experience of practical application. TALAM, Nizhny Novgorod, 208 p (2005) (in Russian)
75.
go back to reference Yadawa, P., Singh, D., Pandey, D., Mishra, G., Yadav, R.: Acoustic wave propagation in nanocrystalline RuCo alloys. Adv. Mater. Phys. Chem. 1(2), 14–19 (2011) Yadawa, P., Singh, D., Pandey, D., Mishra, G., Yadav, R.: Acoustic wave propagation in nanocrystalline RuCo alloys. Adv. Mater. Phys. Chem. 1(2), 14–19 (2011)
76.
go back to reference Destrade, M., Gilchrist, M.D., Saccomandi, G.: Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect. J. Acoust. Soc. Am. 127(5), 2759–2763 (2010) Destrade, M., Gilchrist, M.D., Saccomandi, G.: Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect. J. Acoust. Soc. Am. 127(5), 2759–2763 (2010)
77.
go back to reference Walker, S.V., Kim, J.-Y., Qu, J., Jacobs, L.J.: Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves. NDT&E Int. 48, pp. 10–15 (2012) Walker, S.V., Kim, J.-Y., Qu, J., Jacobs, L.J.: Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves. NDT&E Int. 48, pp. 10–15 (2012)
78.
go back to reference Strakaa, L., Yagodzinskyya, Yu., Landa, M., Hanninena, H.: Detection of structural damage of aluminum alloy 6082 using elastic wave modulation spectroscopy. NDT&E Int. 41(7), 554–563 (2008) Strakaa, L., Yagodzinskyya, Yu., Landa, M., Hanninena, H.: Detection of structural damage of aluminum alloy 6082 using elastic wave modulation spectroscopy. NDT&E Int. 41(7), 554–563 (2008)
79.
go back to reference Hirao, M., Ogi, H., Suzuki, N., Ohtani, T.: Ultrasonic attenuation peak during fatigue of polycrystalline copper. Acta Mater. 48, 517–524 (2000) Hirao, M., Ogi, H., Suzuki, N., Ohtani, T.: Ultrasonic attenuation peak during fatigue of polycrystalline copper. Acta Mater. 48, 517–524 (2000)
80.
go back to reference Smirnov, A.N., Murav’ev, V.V., Khaponen, N.A.: Acoustic criterion of limiting state of long-lived metal of technical devices of hazardous facilities. Kontrol’. Diagnostika (Testing. Diagnost.) 5, 19–23 (2004) (in Russian) Smirnov, A.N., Murav’ev, V.V., Khaponen, N.A.: Acoustic criterion of limiting state of long-lived metal of technical devices of hazardous facilities. Kontrol’. Diagnostika (Testing. Diagnost.) 5, 19–23 (2004) (in Russian)
81.
go back to reference Ilyakhinskii, A.V., Rodyushkin, V.M.: The Dirichlet distribution in the metal-state evaluation problem by the acoustic-sensing method. Russ. J. Nondestr. Test. 51(7), 396–399 (2015) Ilyakhinskii, A.V., Rodyushkin, V.M.: The Dirichlet distribution in the metal-state evaluation problem by the acoustic-sensing method. Russ. J. Nondestr. Test. 51(7), 396–399 (2015)
82.
go back to reference Rodyushkin, V.M., Mishakin, V.V.: Nonlinearity as the index of pre-defective state of a material. Bezopasn. Truda Promyshl. 7, 48–53 (2009) (in Russian) Rodyushkin, V.M., Mishakin, V.V.: Nonlinearity as the index of pre-defective state of a material. Bezopasn. Truda Promyshl. 7, 48–53 (2009) (in Russian)
83.
go back to reference Kunin, I.A.: Elastic Media with Microstructure, vol. 2. Springer, Berlin (1983) Kunin, I.A.: Elastic Media with Microstructure, vol. 2. Springer, Berlin (1983)
84.
go back to reference Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Librairie Scientifique A, 226p. Hermann et Fils, Paris (1909) (Reprint, 2009) Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Librairie Scientifique A, 226p. Hermann et Fils, Paris (1909) (Reprint, 2009)
85.
go back to reference Nowacki, W.: Theory of Micropolar Elasticity. Springer, Wien (1970) Nowacki, W.: Theory of Micropolar Elasticity. Springer, Wien (1970)
86.
go back to reference Leonov, M.G.: Tectonics of the consolidated crust. Nauka, Moscow (2008). (in Russian) Leonov, M.G.: Tectonics of the consolidated crust. Nauka, Moscow (2008). (in Russian)
87.
go back to reference Nikolaevsky, V.N.: Geomechanics and Fluidodynamics. Kluwer Academic Publishers, Dordrecht (1996) Nikolaevsky, V.N.: Geomechanics and Fluidodynamics. Kluwer Academic Publishers, Dordrecht (1996)
88.
go back to reference Milanovskii, E.E. (ed.): Rotational Processes in Geology and Physics. KomKniga, Moscow (2007) (in Russian) Milanovskii, E.E. (ed.): Rotational Processes in Geology and Physics. KomKniga, Moscow (2007) (in Russian)
90.
go back to reference Vikulin, A.V., Ivanchin, A.G.: Model of a seismic process. Vychislit. Tekhnol. 2(2), 20–25 (1997) Vikulin, A.V., Ivanchin, A.G.: Model of a seismic process. Vychislit. Tekhnol. 2(2), 20–25 (1997)
91.
go back to reference Vikulin, A.V., Makhmudov, K.F., Ivanchin, A.G., Gerus, A.I., Dolgaya, A.A.: On wave and rheidity properties of the Earth’s crust. Phys. Solid State 58(3), 561 (2016) Vikulin, A.V., Makhmudov, K.F., Ivanchin, A.G., Gerus, A.I., Dolgaya, A.A.: On wave and rheidity properties of the Earth’s crust. Phys. Solid State 58(3), 561 (2016)
92.
go back to reference Kasahara, K.: Earthquake Mechanics. Cambridge University Press, Cambridge (1981) Kasahara, K.: Earthquake Mechanics. Cambridge University Press, Cambridge (1981)
93.
go back to reference Maslov, L.A.: Geodynamics of the Lithosphere of the Pacific Mobile Belt, 200 p. Dalnauka, Khabarovsk-Vladivostok (1996) (in Russian) Maslov, L.A.: Geodynamics of the Lithosphere of the Pacific Mobile Belt, 200 p. Dalnauka, Khabarovsk-Vladivostok (1996) (in Russian)
94.
go back to reference International Geological-Geophysical Atlas of the Pacific Ocean. Mezhpravit. okeanograf. komm. Saint-Petersburg, Moscow (2003) (in Russian) International Geological-Geophysical Atlas of the Pacific Ocean. Mezhpravit. okeanograf. komm. Saint-Petersburg, Moscow (2003) (in Russian)
95.
go back to reference Vikulin, A.V.: World of Vortex Motions. Kamchatka State Technical University, Petropavlovsk-Kamchatskii (2008). (in Russian) Vikulin, A.V.: World of Vortex Motions. Kamchatka State Technical University, Petropavlovsk-Kamchatskii (2008). (in Russian)
Metadata
Title
Propagation and Interaction of Nonlinear Waves in Generalized Continua
Authors
Vladimir I. Erofeev
Igor S. Pavlov
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-60330-4_7

Premium Partners