Skip to main content
Top
Published in: Flow, Turbulence and Combustion 4/2019

12-06-2019 | SI: THMT-2018

Propagation of Spherically Expanding Turbulent Flames into Fuel Droplet-Mists

Authors: Gulcan Ozel Erol, Josef Hasslberger, Markus Klein, Nilanjan Chakraborty

Published in: Flow, Turbulence and Combustion | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of droplet diameter and the overall (liquid+gas) equivalence ratio on flame topology and propagation statistics in spherically expanding turbulent n-heptane spray flames have been analysed based on three-dimensional Direct Numerical Simulations (DNS) data. It has been found that the range of both mean and Gauss curvatures of the flame surface, and the probability of finding saddle topologies increase with increasing droplet diameter and overall equivalence ratio. The presence of droplets affects the displacement speed and consumption speed statistics principally through the reaction rate of the mixture composition in the reaction zone. The magnitudes of the components of density-weighted displacement speed arising from mixture inhomogeneity and droplet evaporation remain small in comparison to the magnitudes of the reaction rate and molecular diffusion rate components. The presence of large droplets decreases the mean density-weighted displacement speed \( {S}_d^{\ast } \) and increases the probability of finding negative \( {S}_d^{\ast } \) values, except for overall fuel-lean equivalence ratios. The mean consumption speed shows an increasing trend with increasing droplet diameter for fuel-lean overall equivalence ratios, whereas the mean consumption speed decreases with increasing droplet diameter for overall stoichiometric and fuel-rich mixtures. The mean consumption speed remains greater than the mean density-weighted displacement speed for all cases considered here. An alternative flame speed, which represents the growth rate of the flame surface area, has been found to provide an approximate measure of mean consumption flame speed. By contrast, an alternative flame speed, which represents the growth rate of burned gas volume, has been found to approximate the mean density-weighted displacement speed for large droplets in the case of stoichiometric and fuel-rich overall equivalence ratios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The maximum value of unstrained laminar burning velocity \( {S}_{b\left({\phi}_g\right)} \) is obtained for ϕg ≈ 1.1 for the present thermo-chemistry.
 
Literature
1.
go back to reference Hayashi, S., Kumarevgai, S., Sakai, T.: Propagation velocity and structure of flames in droplet-vapor-air mixtures. Combust. Sci. Technol. 15, 169–177 (1977) Hayashi, S., Kumarevgai, S., Sakai, T.: Propagation velocity and structure of flames in droplet-vapor-air mixtures. Combust. Sci. Technol. 15, 169–177 (1977)
2.
go back to reference Abdel-Gayed, R.G., Al-Khishali, K.J., Bradley, D.: Turbulent burning velocities and flame straining in explosions. Proc. R. Soc. Lond. A. 391(1801), 393–414 (1984) Abdel-Gayed, R.G., Al-Khishali, K.J., Bradley, D.: Turbulent burning velocities and flame straining in explosions. Proc. R. Soc. Lond. A. 391(1801), 393–414 (1984)
3.
go back to reference Beretta, G.P., Rashidi, M., Keck, J.C.: Turbulent flame propagation and combustion in spark ignition engines. Combust. Flame. 52, 217–245 (1983) Beretta, G.P., Rashidi, M., Keck, J.C.: Turbulent flame propagation and combustion in spark ignition engines. Combust. Flame. 52, 217–245 (1983)
4.
go back to reference Bradley, D., Gaskell, P.H., Gu, X.J.: Burning velocities, Markstein lengths,and flame quenching for spherical methane-air flames, A computational study. Combust. Flame. 104, 176–198 (1996) Bradley, D., Gaskell, P.H., Gu, X.J.: Burning velocities, Markstein lengths,and flame quenching for spherical methane-air flames, A computational study. Combust. Flame. 104, 176–198 (1996)
5.
go back to reference Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M.: Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. Combust. Flame. 123, 507–521 (2000) Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M.: Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. Combust. Flame. 123, 507–521 (2000)
6.
go back to reference Nwagwe, I.K., Weller, H.G., Tabor, G.R., Gosman, A.D., Lawes, M., Sheppard, C.G.W., Wooley, R.: Measurements and large eddy simulations of turbulent premixed flame kernel growth. Proc. Combust. Inst. 28, 59–65 (2000) Nwagwe, I.K., Weller, H.G., Tabor, G.R., Gosman, A.D., Lawes, M., Sheppard, C.G.W., Wooley, R.: Measurements and large eddy simulations of turbulent premixed flame kernel growth. Proc. Combust. Inst. 28, 59–65 (2000)
7.
go back to reference Haq, M.Z., Sheppard, C.G.W., Woolley, R., Greenhalgh, D.A., Lockett, R.D.: Wrinkling and curvature of laminar and turbulent premixed flames. Combust. Flame. 131, 1–15 (2002) Haq, M.Z., Sheppard, C.G.W., Woolley, R., Greenhalgh, D.A., Lockett, R.D.: Wrinkling and curvature of laminar and turbulent premixed flames. Combust. Flame. 131, 1–15 (2002)
8.
go back to reference Bradley, D., Haq, M.Z., Hicks, R.A., Kitagawa, T., Lawes, M., Sheppard, C.G.W., Woolley, R.: Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combust. Flame. 133, 415–430 (2003) Bradley, D., Haq, M.Z., Hicks, R.A., Kitagawa, T., Lawes, M., Sheppard, C.G.W., Woolley, R.: Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combust. Flame. 133, 415–430 (2003)
9.
go back to reference Gashi, S., Hult, J., Jenkins, K.W., Chakraborty, N., Cant, R.S., Kaminski, C.F.: Curvature and wrinkling of premixed flame kernels—comparisons of OH PLIF and DNS data. Proc. Combust. Inst. 30, 809–817 (2005) Gashi, S., Hult, J., Jenkins, K.W., Chakraborty, N., Cant, R.S., Kaminski, C.F.: Curvature and wrinkling of premixed flame kernels—comparisons of OH PLIF and DNS data. Proc. Combust. Inst. 30, 809–817 (2005)
10.
go back to reference Hult, J., Gashi, S., Chakraborty, N., Klein, M., Jenkins, K.W., Cant, R.S., Kaminski, C.F.: Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Proc. Combust. Inst. 31(I), 1319–1326 (2007) Hult, J., Gashi, S., Chakraborty, N., Klein, M., Jenkins, K.W., Cant, R.S., Kaminski, C.F.: Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Proc. Combust. Inst. 31(I), 1319–1326 (2007)
11.
go back to reference Lawes, M., Saat, A.: Burning rates of turbulent iso-octane aerosol mixtures in spherical flame explosions. Proc. Combust. Inst. 33, 2047–2054 (2011) Lawes, M., Saat, A.: Burning rates of turbulent iso-octane aerosol mixtures in spherical flame explosions. Proc. Combust. Inst. 33, 2047–2054 (2011)
12.
go back to reference Lawes, M., Ormsby, M.P., Sheppard, C.G.W., Woolley, R.: The turbulent burning velocity of iso-octane/air mixtures. Combust. Flame. 159, 1949–1959 (2012) Lawes, M., Ormsby, M.P., Sheppard, C.G.W., Woolley, R.: The turbulent burning velocity of iso-octane/air mixtures. Combust. Flame. 159, 1949–1959 (2012)
13.
go back to reference Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044503–0441–5 (2012) Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044503–0441–5 (2012)
14.
go back to reference Akkerman, V., Chaudhuri, S., Law, C.K.: Accelerative propagation and explosion triggering by expanding turbulent premixed flames. Phys. Rev. E. 87(23008), (2013) Akkerman, V., Chaudhuri, S., Law, C.K.: Accelerative propagation and explosion triggering by expanding turbulent premixed flames. Phys. Rev. E. 87(23008), (2013)
15.
go back to reference Brequigny, P., Endouard, C., Mounaïm-Rousselle, C., Foucher, F.: An experimental study on turbulent premixed expanding flames using simultaneously Schlieren and tomography techniques. Exp. Therm. Sci. 95, 11–17 (2018) Brequigny, P., Endouard, C., Mounaïm-Rousselle, C., Foucher, F.: An experimental study on turbulent premixed expanding flames using simultaneously Schlieren and tomography techniques. Exp. Therm. Sci. 95, 11–17 (2018)
16.
go back to reference Thimothée, R., Chauveau, C., Halter, F. and Gökalp I., Characterization of cellular instabilities of a flame propagating in an aerosol, Proc. of ASME Turbo Expo 2015, GT2015–44022, Canada, (2015) Thimothée, R., Chauveau, C., Halter, F. and Gökalp I., Characterization of cellular instabilities of a flame propagating in an aerosol, Proc. of ASME Turbo Expo 2015, GT2015–44022, Canada, (2015)
17.
go back to reference Baum, M., Poinsot, T.: Effects of mean flow on premixed flame ignition. Combust. Sci. Technol. 106, 19–39 (1995) Baum, M., Poinsot, T.: Effects of mean flow on premixed flame ignition. Combust. Sci. Technol. 106, 19–39 (1995)
18.
go back to reference Poinsot, T., Candel, S., Trouve, A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21, 531–576 (1995) Poinsot, T., Candel, S., Trouve, A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21, 531–576 (1995)
19.
go back to reference Schmid, H.-P., Habisreuther, P., Leuckel, W.: A model for calculating heat release in premixed turbulent flames. Combust. Flame. 113, 79–91 (1998) Schmid, H.-P., Habisreuther, P., Leuckel, W.: A model for calculating heat release in premixed turbulent flames. Combust. Flame. 113, 79–91 (1998)
20.
go back to reference Jenkins, K.W., Cant, R.S.: Curvature effects on flame kernels in a turbulent environment. Proc. Combust. Inst. 29, 2023–2029 (2002) Jenkins, K.W., Cant, R.S.: Curvature effects on flame kernels in a turbulent environment. Proc. Combust. Inst. 29, 2023–2029 (2002)
21.
go back to reference Tabor, G., Weller, H.G.: Large eddy simulation of premixed turbulent combustion using flame surface wrinkling model. Flow Turbul. Combust. 72, 1–27 (2004)MATH Tabor, G., Weller, H.G.: Large eddy simulation of premixed turbulent combustion using flame surface wrinkling model. Flow Turbul. Combust. 72, 1–27 (2004)MATH
22.
go back to reference van Oijen, J.A., Groot, G.R.A., Bastiaans, R.J.M., de Goey, L.P.H.: A flamelet analysis of the burning velocity of premixed turbulent expanding flames. Proc. Combust. Inst. 30, 657–664 (2005) van Oijen, J.A., Groot, G.R.A., Bastiaans, R.J.M., de Goey, L.P.H.: A flamelet analysis of the burning velocity of premixed turbulent expanding flames. Proc. Combust. Inst. 30, 657–664 (2005)
23.
go back to reference Thevenin, D.: Three-dimensional direct simulations and structure of expanding turbulent methane flames. Proc. Combust. Inst. 30, 629–637 (2005) Thevenin, D.: Three-dimensional direct simulations and structure of expanding turbulent methane flames. Proc. Combust. Inst. 30, 629–637 (2005)
24.
go back to reference Klein, M., Chakraborty, N., Jenkins, K.W., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids. 18(5), 055102 (2006)MathSciNetMATH Klein, M., Chakraborty, N., Jenkins, K.W., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids. 18(5), 055102 (2006)MathSciNetMATH
25.
go back to reference Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reactionzones regime. Combust. Flame. 145, 415–434 (2006) Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reactionzones regime. Combust. Flame. 145, 415–434 (2006)
26.
go back to reference Klein, M., Chakraborty, N., Cant, R.S.: Effects of turbulence on self-sustained combustion in premixed flame kernels, a direct numerical simulation (DNS) study. Flow Turbul. Combust. 81, 583–607 (2008)MATH Klein, M., Chakraborty, N., Cant, R.S.: Effects of turbulence on self-sustained combustion in premixed flame kernels, a direct numerical simulation (DNS) study. Flow Turbul. Combust. 81, 583–607 (2008)MATH
27.
go back to reference Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007) Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)
28.
go back to reference Dunstan, T.D., Jenkins, K.W.: Flame surface density distribution in turbulent flame kernels during the early stages of growth. Proc. Combust. Inst. 32, 1427–1434 (2009) Dunstan, T.D., Jenkins, K.W.: Flame surface density distribution in turbulent flame kernels during the early stages of growth. Proc. Combust. Inst. 32, 1427–1434 (2009)
29.
go back to reference Dunstan, T.D., Jenkins, K.W.: The effects of hydrogen substitution on turbulent premixed methane-air kernels using direct numerical simulationnt. Int. J. Hydrog. Energy. 34, 8389–8404 (2009) Dunstan, T.D., Jenkins, K.W.: The effects of hydrogen substitution on turbulent premixed methane-air kernels using direct numerical simulationnt. Int. J. Hydrog. Energy. 34, 8389–8404 (2009)
30.
go back to reference Chakraborty, N., Klein, M.: Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 32, 1435–1443 (2009) Chakraborty, N., Klein, M.: Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 32, 1435–1443 (2009)
31.
go back to reference Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Hybrid presumed pdf and flame surface density approaches for large-eddy simulation of premixed turbulent combustion. part 2, Early flame development after sparking. Combust. Flame. 158, 1215–1226 (2011) Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Hybrid presumed pdf and flame surface density approaches for large-eddy simulation of premixed turbulent combustion. part 2, Early flame development after sparking. Combust. Flame. 158, 1215–1226 (2011)
32.
go back to reference Colin, O., Truffin, K.: A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES). Proc. Combust. Inst. 33, 3097–3104 (2011) Colin, O., Truffin, K.: A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES). Proc. Combust. Inst. 33, 3097–3104 (2011)
33.
go back to reference Ahmed, I., Swaminathan, N.: Simulation of spherically expanding turbulent premixed flames. Combust. Sci.Technol. 185, 1509–1540 (2013) Ahmed, I., Swaminathan, N.: Simulation of spherically expanding turbulent premixed flames. Combust. Sci.Technol. 185, 1509–1540 (2013)
34.
go back to reference Ahmed, I., Swaminathan, N.: 2014, Simulation of turbulent explosion of hydrogen-air mixtures. Int. J. Hydrog. Energy. 39, 9562–9572 (2014) Ahmed, I., Swaminathan, N.: 2014, Simulation of turbulent explosion of hydrogen-air mixtures. Int. J. Hydrog. Energy. 39, 9562–9572 (2014)
35.
go back to reference Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N.: A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity. Phys. Fluids. 086104, (2018) Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N.: A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity. Phys. Fluids. 086104, (2018)
37.
go back to reference Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N.: A Direct Numerical Simulation investigation of spherically expanding flames propagating in fuel droplet-mists for different droplet diameters and overall equivalence ratios. Combust. Sci. Technol. (2019). https://doi.org/10.1080/00102202.2019.1576649 Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N.: A Direct Numerical Simulation investigation of spherically expanding flames propagating in fuel droplet-mists for different droplet diameters and overall equivalence ratios. Combust. Sci. Technol. (2019). https://​doi.​org/​10.​1080/​00102202.​2019.​1576649
38.
go back to reference Poinsot, T.J., Echekki, T., Mungal, M.G.: A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 45–73 (1992) Poinsot, T.J., Echekki, T., Mungal, M.G.: A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 45–73 (1992)
39.
go back to reference Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992) Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)
40.
go back to reference Rutland, C., Trouvé, A.: Direct Simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame. 94, 41–57 (1993) Rutland, C., Trouvé, A.: Direct Simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame. 94, 41–57 (1993)
41.
go back to reference Fries, D., Ochs, B.A., Saha, A., Ranjan, D., Menon, S.: Flame speed characteristics of turbulent expanding flames in a rectangular channel. Combust. Flame. 199, 1–13 (2018) Fries, D., Ochs, B.A., Saha, A., Ranjan, D., Menon, S.: Flame speed characteristics of turbulent expanding flames in a rectangular channel. Combust. Flame. 199, 1–13 (2018)
42.
go back to reference Sahafzadeh, M., Dworkin, S.B., Kostiuk, L.W.: Predicting the reneou of a premixed flame subjected to unsteady stretch rates. Combust. Flame. 196, 237–248 (2018) Sahafzadeh, M., Dworkin, S.B., Kostiuk, L.W.: Predicting the reneou of a premixed flame subjected to unsteady stretch rates. Combust. Flame. 196, 237–248 (2018)
43.
go back to reference Echekki, T., Chen, J.H.: Unsteady Strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame. 106, 184–202 (1996) Echekki, T., Chen, J.H.: Unsteady Strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame. 106, 184–202 (1996)
44.
go back to reference Chen, J.H., Im, H.G.: Correlation of flame speed with stretch in turbulent premixed methane/air flame. Proc. Combust. Inst. 27, 819–826 (1998) Chen, J.H., Im, H.G.: Correlation of flame speed with stretch in turbulent premixed methane/air flame. Proc. Combust. Inst. 27, 819–826 (1998)
45.
go back to reference Echekki, T., Chen, J.H.: Analysis of the Contribution of Curvature to Premixed Flame Propagation. Combust. Flame. 108, 308–311 (1999) Echekki, T., Chen, J.H.: Analysis of the Contribution of Curvature to Premixed Flame Propagation. Combust. Flame. 108, 308–311 (1999)
46.
go back to reference Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inlet-outlet configuration. Combust. Flame. 137, 129–147 (2004) Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inlet-outlet configuration. Combust. Flame. 137, 129–147 (2004)
47.
go back to reference Chakraborty, N., Cant, R.S.: Influence of Lewis Number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime, Phys. Fluids. 17, 105105 (2005)MATH Chakraborty, N., Cant, R.S.: Influence of Lewis Number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime, Phys. Fluids. 17, 105105 (2005)MATH
48.
go back to reference Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane air flames. Combust. Flame. 138, 242–258 (2004) Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane air flames. Combust. Flame. 138, 242–258 (2004)
49.
go back to reference Hawkes, E.R., Chen, J.H.: Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst. 30, 647–655 (2005) Hawkes, E.R., Chen, J.H.: Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst. 30, 647–655 (2005)
50.
go back to reference Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids. 19, 105109 (2007)MATH Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids. 19, 105109 (2007)MATH
51.
go back to reference Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed CH4-air and H2-air flames, A comparative study. Combust. Flame. 154, 259–280 (2008) Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed CH4-air and H2-air flames, A comparative study. Combust. Flame. 154, 259–280 (2008)
52.
go back to reference Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame. 152, 194–205 (2008) Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame. 152, 194–205 (2008)
53.
go back to reference Mizutani, Y., Nishimoto, T.: Combustion of fuel vapor-drop-air systems: Part II-spherical flames in a vessel. Combust. Flame. 20, 351–357 (1973) Mizutani, Y., Nishimoto, T.: Combustion of fuel vapor-drop-air systems: Part II-spherical flames in a vessel. Combust. Flame. 20, 351–357 (1973)
54.
go back to reference Polymeropoulos, C.E.: Flame propagation in aerosols of fuel droplets, fuel vapor and air. Combust. Sci. Technol. 40, 217–232 (1984) Polymeropoulos, C.E.: Flame propagation in aerosols of fuel droplets, fuel vapor and air. Combust. Sci. Technol. 40, 217–232 (1984)
55.
go back to reference Silverman, I., Greenberg, J.B., Tambour, Y.: Stoichiometry and polydisperse effects in premixed spray flames. Combust. Flame. 93, 97–118 (1993) Silverman, I., Greenberg, J.B., Tambour, Y.: Stoichiometry and polydisperse effects in premixed spray flames. Combust. Flame. 93, 97–118 (1993)
56.
go back to reference Greenberg, J.B., Silverman, I., Tambour, Y.: On droplet enhancement of the burning velocity of laminar premixed spray flames. Combust. Flame. 113, 271–273 (1998) Greenberg, J.B., Silverman, I., Tambour, Y.: On droplet enhancement of the burning velocity of laminar premixed spray flames. Combust. Flame. 113, 271–273 (1998)
57.
go back to reference Burgoyne, J.H., Cohen, L.: The effect of drop size on flame propagation in liquid aerosols. Proc. R. Soc. London. Ser. A. 225, 375–392 (1954) Burgoyne, J.H., Cohen, L.: The effect of drop size on flame propagation in liquid aerosols. Proc. R. Soc. London. Ser. A. 225, 375–392 (1954)
58.
go back to reference Szekely, G.A., Faeth, G.M.: Effects of envelope flames on drop gasification rates in turbulent diffusion flames. Combust. Flame. 49, 255–259 (1983) Szekely, G.A., Faeth, G.M.: Effects of envelope flames on drop gasification rates in turbulent diffusion flames. Combust. Flame. 49, 255–259 (1983)
59.
go back to reference Ballal, D.R., Lefebvre, A.H.: Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air. Symp. Combust. 18, 321–328 (1981) Ballal, D.R., Lefebvre, A.H.: Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air. Symp. Combust. 18, 321–328 (1981)
60.
go back to reference Reveillon, J., Vervisch, L.: Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model. Combust. Flame. 121, 75–90 (2000) Reveillon, J., Vervisch, L.: Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model. Combust. Flame. 121, 75–90 (2000)
61.
go back to reference Nakamura, M., Akamatsu, F., Kurose, R., Katsuki, M.: Combustion mechanism of liquid fuel spray in a gaseous flame. Phys. Fluids. 17(1–14), (2005)MATH Nakamura, M., Akamatsu, F., Kurose, R., Katsuki, M.: Combustion mechanism of liquid fuel spray in a gaseous flame. Phys. Fluids. 17(1–14), (2005)MATH
62.
go back to reference Watanabe, H., Kurose, R., Hwang, S.M., Akamatsu, F.: Characteristics of flamelets in spray flames formed in a laminar counterflow. Combust. Flame. 148, 234–248 (2007) Watanabe, H., Kurose, R., Hwang, S.M., Akamatsu, F.: Characteristics of flamelets in spray flames formed in a laminar counterflow. Combust. Flame. 148, 234–248 (2007)
63.
go back to reference Reveillon, J., Demoulin, F.X.: Evaporating droplets in turbulent reacting flows. Proc. Combust. Inst. 31, 2319–2326 (2007) Reveillon, J., Demoulin, F.X.: Evaporating droplets in turbulent reacting flows. Proc. Combust. Inst. 31, 2319–2326 (2007)
64.
go back to reference Sreedhara, S., Huh, K.Y.: Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Combust. Inst. 31 II, 2335–2342 (2007) Sreedhara, S., Huh, K.Y.: Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Combust. Inst. 31 II, 2335–2342 (2007)
65.
go back to reference Xia, J., Luo, K.H.: Direct numerical simulation of inert droplet effects on scalar dissipation rate in turbulent reacting and non-reacting shear layers. Flow, Turbul. Combust. 84, 397–422 (2010)MATH Xia, J., Luo, K.H.: Direct numerical simulation of inert droplet effects on scalar dissipation rate in turbulent reacting and non-reacting shear layers. Flow, Turbul. Combust. 84, 397–422 (2010)MATH
66.
go back to reference Fujita, A., Watanabe, H., Kurose, R., Komori, S.: Two-dimensional direct numerical simulation of spray flames - Part 1: Effects of equivalence ratio, fuel droplet size and radiation, and validity of flamelet model. Fuel. 104, 515–525 (2013) Fujita, A., Watanabe, H., Kurose, R., Komori, S.: Two-dimensional direct numerical simulation of spray flames - Part 1: Effects of equivalence ratio, fuel droplet size and radiation, and validity of flamelet model. Fuel. 104, 515–525 (2013)
67.
go back to reference Wacks, D., Chakraborty, N.: Flame structure and propagation in turbulent flame-droplet interaction: A Direct Numerical Simulation analysis. Flow, Turbul. Combust. 96, 1053–1081 (2016) Wacks, D., Chakraborty, N.: Flame structure and propagation in turbulent flame-droplet interaction: A Direct Numerical Simulation analysis. Flow, Turbul. Combust. 96, 1053–1081 (2016)
68.
go back to reference Wacks, D., Chakraborty, N.: Flow topology and alignments of scalar gradients and vorticity in turbulent spray flames: A Direct Numerical Simulation analysis. Fuel. 184, 922–947 (2016) Wacks, D., Chakraborty, N.: Flow topology and alignments of scalar gradients and vorticity in turbulent spray flames: A Direct Numerical Simulation analysis. Fuel. 184, 922–947 (2016)
69.
go back to reference Wacks, D., Chakraborty, N., Mastorakos, E.: Statistical analysis of turbulent flame-droplet interaction: A Direct Numerical Simulation study. Flow, Turbul. Combust. 96, 573–607 (2016) Wacks, D., Chakraborty, N., Mastorakos, E.: Statistical analysis of turbulent flame-droplet interaction: A Direct Numerical Simulation study. Flow, Turbul. Combust. 96, 573–607 (2016)
70.
go back to reference Wang, Y., Rutland, C.J.: Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow. Proc. Combust. Inst. 30, 893–900 (2005) Wang, Y., Rutland, C.J.: Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow. Proc. Combust. Inst. 30, 893–900 (2005)
71.
go back to reference Schroll, P., Wandel, A.P., Cant, R.S., Mastorakos, E.: Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Combust. Inst. 32, 2275–2282 (2009) Schroll, P., Wandel, A.P., Cant, R.S., Mastorakos, E.: Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Combust. Inst. 32, 2275–2282 (2009)
72.
go back to reference Wandel, A.P., Chakraborty, N., Mastorakos, E.: Direct numerical simulations of turbulent flame expansion in fine sprays. Proc. Combust. Inst. 32, 2283–2290 (2009) Wandel, A.P., Chakraborty, N., Mastorakos, E.: Direct numerical simulations of turbulent flame expansion in fine sprays. Proc. Combust. Inst. 32, 2283–2290 (2009)
73.
go back to reference Wandel, A.P.: Influence of scalar dissipation on flame success in turbulent sprays with spark ignition. Combust. Flame. 161, 2579–2600 (2014) Wandel, A.P.: Influence of scalar dissipation on flame success in turbulent sprays with spark ignition. Combust. Flame. 161, 2579–2600 (2014)
74.
go back to reference Neophytou, A., Mastorakos, E., Cant, R.S.: The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Combust. Flame. 159, 641–664 (2012) Neophytou, A., Mastorakos, E., Cant, R.S.: The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Combust. Flame. 159, 641–664 (2012)
75.
go back to reference Neophytou, A., Mastorakos, E., Cant, R.S.: DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame. 157, 1071–1086 (2010) Neophytou, A., Mastorakos, E., Cant, R.S.: DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame. 157, 1071–1086 (2010)
76.
go back to reference Tarrazo, E.F., Sánchez, A.L., Liñán, A., Williams, F.A.: A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame. 147, 32–38 (2006) Tarrazo, E.F., Sánchez, A.L., Liñán, A., Williams, F.A.: A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame. 147, 32–38 (2006)
77.
go back to reference Malkeson, S.P., Chakraborty, N.: Statistical analysis of displacement speed in turbulent stratified flames: A direct numerical simulation study. Combust. Sci. Technol. 182, 1841–1883 (2010) Malkeson, S.P., Chakraborty, N.: Statistical analysis of displacement speed in turbulent stratified flames: A direct numerical simulation study. Combust. Sci. Technol. 182, 1841–1883 (2010)
78.
go back to reference Swaminathan, N., Bray, K.N.C.: Turbulent Premixed Flames, p. 5. Cambridge University Press, NewYork (2011) Swaminathan, N., Bray, K.N.C.: Turbulent Premixed Flames, p. 5. Cambridge University Press, NewYork (2011)
79.
go back to reference Kumar, K., Freeh, J.E., Sung, C.J., Huang, Y.: Laminar flame speeds of preheated iso-octance/O2/N2 and n-heptane/O2/N2 mixtures. J. Propuls. Power. 23, 428–436 (2007) Kumar, K., Freeh, J.E., Sung, C.J., Huang, Y.: Laminar flame speeds of preheated iso-octance/O2/N2 and n-heptane/O2/N2 mixtures. J. Propuls. Power. 23, 428–436 (2007)
80.
go back to reference Chaos, M., Kazakov, A., Zhao, Z., Dryer, F.L.: A high-temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet. 39, 399–414 (2007) Chaos, M., Kazakov, A., Zhao, Z., Dryer, F.L.: A high-temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet. 39, 399–414 (2007)
81.
go back to reference Chakraborty, N., Cant, R.S.: A-Priori Analysis of the curvature and propagation terms of the Flame Surface Density transport equation for Large Eddy Simulation. Phys. Fluids. 19, 105101 (2007)MATH Chakraborty, N., Cant, R.S.: A-Priori Analysis of the curvature and propagation terms of the Flame Surface Density transport equation for Large Eddy Simulation. Phys. Fluids. 19, 105101 (2007)MATH
82.
go back to reference Chakraborty, N., Cant, R.S.: Direct Numerical Simulation analysis of the Flame Surface Density transport equation in the context of Large Eddy Simulation. Proc. Combust. Inst. 32, 1445–1453 (2009) Chakraborty, N., Cant, R.S.: Direct Numerical Simulation analysis of the Flame Surface Density transport equation in the context of Large Eddy Simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)
83.
go back to reference Wray, A.A., Minimal storage time advanced schemes for spectral methods. California (1990) Wray, A.A., Minimal storage time advanced schemes for spectral methods. California (1990)
84.
go back to reference Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetMATH Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetMATH
85.
go back to reference Rotexo-Softpredict-Cosilab, GmbH and Co. KG Bad Zwischenahn, Germany Rotexo-Softpredict-Cosilab, GmbH and Co. KG Bad Zwischenahn, Germany
86.
go back to reference Neophytou, A., Mastorakos, E.: Simulations of laminar flame propagation in droplet mists. Combust. Flame. 156, 1627–1640 (2009) Neophytou, A., Mastorakos, E.: Simulations of laminar flame propagation in droplet mists. Combust. Flame. 156, 1627–1640 (2009)
87.
go back to reference Rogallo, R.S.: Numerical experiments in homogeneous turbulence, California (1981) Rogallo, R.S.: Numerical experiments in homogeneous turbulence, California (1981)
88.
go back to reference Peters, N.: Turbulent combustion, Cambridge monograph on mechanics, 1st edn. Cambridge University Press, Cambridge (2000) Peters, N.: Turbulent combustion, Cambridge monograph on mechanics, 1st edn. Cambridge University Press, Cambridge (2000)
89.
go back to reference Grout, R.W.: An age extended progress variable for conditioning reaction rates. Phys. Fluids. 19, 105107 (2007)MATH Grout, R.W.: An age extended progress variable for conditioning reaction rates. Phys. Fluids. 19, 105107 (2007)MATH
90.
go back to reference Pera, C., Chevillard, S., Reveillon, J.: Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame. 160, 1020–1032 (2013) Pera, C., Chevillard, S., Reveillon, J.: Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame. 160, 1020–1032 (2013)
91.
go back to reference Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. Phys. Rev. E. 76, 056316 (2007) Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. Phys. Rev. E. 76, 056316 (2007)
92.
go back to reference Poinsot, T., Veynante, D.: Theoretical and numerical combustion, 1st Edition, R.T. Edwards Inc, Philadelphia (2001) Poinsot, T., Veynante, D.: Theoretical and numerical combustion, 1st Edition, R.T. Edwards Inc, Philadelphia (2001)
Metadata
Title
Propagation of Spherically Expanding Turbulent Flames into Fuel Droplet-Mists
Authors
Gulcan Ozel Erol
Josef Hasslberger
Markus Klein
Nilanjan Chakraborty
Publication date
12-06-2019
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 4/2019
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00035-x

Other articles of this Issue 4/2019

Flow, Turbulence and Combustion 4/2019 Go to the issue

Premium Partners