Skip to main content
Top

2024 | OriginalPaper | Chapter

Proposal for a Digital OEE Architecture with the Integration of Analysis Parameters of Machines of the Manufacturing Industry

Authors : Juliane Andressa Camatti, Ederson Carvalhar Fernandes, Milton Borsato, Maycon Lisboa, Elcio Ricardo Jesus, Luiz Gustavo de Carvalho Romanel

Published in: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sudden and unexpected economic changes associated with market competition and short product life cycles have generated significant organizational challenges. Thus improvements in processes and product characteristics can directly interfere with their production capacity. To identify improvements in the process, it is fundamental to analyze how the process is developing and, based on that, make favourable decisions. Today, several companies analyze their data, but most of these are done by manually collected data, which brings much uncertainty and can delay the analysis and decision-making process. The present work aims to propose a digital architecture to calculate the OEE (Overall Equipment Effectiveness) for machines in the manufacturing industry. The relationship between the behaviour parameters of the machines allows for diagnosing critical factors for the production system, namely performance, availability, and quality. The machine parameters presented in a short period allow faster action by operators in cases of failures in the activity, and greater security in the planning of the production process, as well as in the development of products and maintenance schedules, directly impacting the production cost. The project's innovation is carried out through digital data modelling based on the ETL context with parameters derived from the behaviour of a machine, where they are dynamically processed and correlated in the Desktop software to illustrate the calculated OEE value.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Oliveira, R., Takia, S.A., Sousaa, S., Salimia, M.A.: Global process effectiveness: when overall equipment effectiveness meets adherence to schedule. Proc. Manuf. 38, 1615–1622 (2019) Oliveira, R., Takia, S.A., Sousaa, S., Salimia, M.A.: Global process effectiveness: when overall equipment effectiveness meets adherence to schedule. Proc. Manuf. 38, 1615–1622 (2019)
2.
go back to reference Tedeschi, S., Rodrigues, D., Emmanouilidis, C., Erkoyuncu, J., Roy, R., Starr, A.: A cost estimation approach for IoT modular architectures implementation in legacy systems. Proc. Manuf. 19, 103–110 (2018) Tedeschi, S., Rodrigues, D., Emmanouilidis, C., Erkoyuncu, J., Roy, R., Starr, A.: A cost estimation approach for IoT modular architectures implementation in legacy systems. Proc. Manuf. 19, 103–110 (2018)
3.
go back to reference Covaci, F.L., Zaraté, P.: Modelling decision making in digital supply chains: insights from the petroleum industry. Kybernetes 49(4), 1213–1228 (2019)CrossRef Covaci, F.L., Zaraté, P.: Modelling decision making in digital supply chains: insights from the petroleum industry. Kybernetes 49(4), 1213–1228 (2019)CrossRef
4.
go back to reference Heng, Z., Aiping, L., Liyun, X., Moroni, G.: Automatic estimate of OEE considering uncertainty. Procedia CIRP 81, 630–635 (2019)CrossRef Heng, Z., Aiping, L., Liyun, X., Moroni, G.: Automatic estimate of OEE considering uncertainty. Procedia CIRP 81, 630–635 (2019)CrossRef
5.
go back to reference Dewi, S., Alhilman, J., Atmaji, F.T.D.: Evaluation of effectiveness and cost of machine losses using Overall Equipment Effectiveness (OEE) and Overall Equipment Cost Loss (OECL) methods, a case study on Toshiba CNC Machine. In: IOP Conference Series: Materials Science and Engineering, vol. 847, no. 1, p. 012020. IOP Publishing (2020) Dewi, S., Alhilman, J., Atmaji, F.T.D.: Evaluation of effectiveness and cost of machine losses using Overall Equipment Effectiveness (OEE) and Overall Equipment Cost Loss (OECL) methods, a case study on Toshiba CNC Machine. In: IOP Conference Series: Materials Science and Engineering, vol. 847, no. 1, p. 012020. IOP Publishing (2020)
6.
go back to reference Christou, I.T., Kefalakis, N., Soldatos, J.K., Despotopoulou, A.M.: End-to-end industrial IoT platform for Quality 4.0 applications. Comput. Ind. 137, 103591 (2022) Christou, I.T., Kefalakis, N., Soldatos, J.K., Despotopoulou, A.M.: End-to-end industrial IoT platform for Quality 4.0 applications. Comput. Ind. 137, 103591 (2022)
7.
go back to reference Yuan, M., Alghassi, A., Zhao, S.F., Sin Wah, W., Muhammad, A., Cui, J., Myo, K.S.: Online overall equipment effectiveness (OEE) improvement using data analytics techniques for CNC machines. In: Toro, C., Wang, W., Akhtar, H. (eds.) Implementing Industry 4.0: The Model Factory as the Key Enabler for the Future of Manufacturing, pp. 201–228. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-67270-6_8CrossRef Yuan, M., Alghassi, A., Zhao, S.F., Sin Wah, W., Muhammad, A., Cui, J., Myo, K.S.: Online overall equipment effectiveness (OEE) improvement using data analytics techniques for CNC machines. In: Toro, C., Wang, W., Akhtar, H. (eds.) Implementing Industry 4.0: The Model Factory as the Key Enabler for the Future of Manufacturing, pp. 201–228. Springer International Publishing, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-67270-6_​8CrossRef
9.
go back to reference Jain, V., Ajmera, P.: Modelling the enablers of industry 4.0 in the Indian manufacturing industry. Int. J. Prod. Perform. Manag. 70(6), 1233–1262 (2020)CrossRef Jain, V., Ajmera, P.: Modelling the enablers of industry 4.0 in the Indian manufacturing industry. Int. J. Prod. Perform. Manag. 70(6), 1233–1262 (2020)CrossRef
10.
go back to reference Del Castillo, A.C., Patsavellas, J., Salonitis, K., Emmanouilidis, C.: The productivity impact of the digitally connected 5–layer stack in manufacturing enterprises. Procedia CIRP 104, 342–350 (2021)CrossRef Del Castillo, A.C., Patsavellas, J., Salonitis, K., Emmanouilidis, C.: The productivity impact of the digitally connected 5–layer stack in manufacturing enterprises. Procedia CIRP 104, 342–350 (2021)CrossRef
11.
go back to reference Li, Y.H., Inoue, L.C.G.V., Sinha, R.: Real-time OEE visualization for downtime detection. In: IEEE 20th International Conference on Industrial Informatics (INDIN), pp. 729–734 (2022) Li, Y.H., Inoue, L.C.G.V., Sinha, R.: Real-time OEE visualization for downtime detection. In: IEEE 20th International Conference on Industrial Informatics (INDIN), pp. 729–734 (2022)
13.
go back to reference De Oliveira, V.F., Pessoa, M.A.D.O., Junqueira, F., Miyagi, P.E.: SQL and NoSQL databases in the context of industry 4.0. Machines, vol. 10, no. 1, p. 20 (2021) De Oliveira, V.F., Pessoa, M.A.D.O., Junqueira, F., Miyagi, P.E.: SQL and NoSQL databases in the context of industry 4.0. Machines, vol. 10, no. 1, p. 20 (2021)
14.
go back to reference Akbar, M.A., et al.: Improving the quality of software development process by introducing a new methodology–AZ-model. IEEE 6, 4811–4823 (2017) Akbar, M.A., et al.: Improving the quality of software development process by introducing a new methodology–AZ-model. IEEE 6, 4811–4823 (2017)
Metadata
Title
Proposal for a Digital OEE Architecture with the Integration of Analysis Parameters of Machines of the Manufacturing Industry
Authors
Juliane Andressa Camatti
Ederson Carvalhar Fernandes
Milton Borsato
Maycon Lisboa
Elcio Ricardo Jesus
Luiz Gustavo de Carvalho Romanel
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_82

Premium Partner