Skip to main content
Top

2017 | OriginalPaper | Chapter

7. Prospects for Rational Control of Nanocrystal Shape Through Successive Ionic Layer Adsorption and Reaction (SILAR) and Related Approaches

Authors : Andrew B. Greytak, Rui Tan, Stephen K. Roberts

Published in: Anisotropic and Shape-Selective Nanomaterials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes the use of colloidal successive ionic layer addition as an additive growth method to form inorganic colloidal nanocrystals with controlled shapes. Rational design of nanocrystal dimensions and layer thicknesses in nanocrystal heterostructures is important to many current and anticipated uses of nanocrystals in optoelectronics, energy conversion, and fluorescence imaging. One approach to shape control is the use of a series of self-limiting surface reactions to build up crystals one atomic layer at a time. This approach is especially applicable to nanocrystals made of binary ionic or polar-covalent crystalline compounds, as are found in colloidal quantum dots (QDs). The intrinsic symmetry present in colloidal nanocrystal nuclei can be suppressed to enforce conformal layer growth or harnessed to promote regioselective growth. We specifically discuss two families of methods that are colloidal analogues of vapor-source atomic layer deposition. In colloidal successive ionic layer adsorption and reaction (colloidal SILAR), reagents are introduced to a nanocrystal solution in metered doses corresponding to the total surface area. In colloidal atomic layer deposition (colloidal ALD), reagents are added in excess, and unreacted reagent is subsequently separated and removed. An extensive literature exists on the use of colloidal SILAR to form nominally isotropic core/shell quantum dots (QDs) with high photoluminescence quantum yield. Colloidal ALD has been introduced more recently. There is increasing interest in applying both methods to the formation of anisotropic nanocrystal heterostructures, both through deposition of conformal layers on anisotropic substrates and through controlled anisotropic growth. We review the historical development of these methods, common precursors, and recent developments in monitoring of reaction progress and mechanisms. We also present contemporary examples of isotropic and anisotropic growth, and prospects for future development in the context of several representative applications including cell membrane voltage measurements and fluorescence anisotropy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference George, S.M., A.W. Ott, and J.W. Klaus. 1996. Surface chemistry for atomic layer growth. Journal of Physical Chemistry 100 (31): 13121–13131.CrossRef George, S.M., A.W. Ott, and J.W. Klaus. 1996. Surface chemistry for atomic layer growth. Journal of Physical Chemistry 100 (31): 13121–13131.CrossRef
2.
go back to reference Hausmann, D., J. Becker, S.L. Wang, and R.G. Gordon. 2002. Rapid vapor deposition of highly conformal silica nanolaminates. Science 298 (5592): 402–406.CrossRef Hausmann, D., J. Becker, S.L. Wang, and R.G. Gordon. 2002. Rapid vapor deposition of highly conformal silica nanolaminates. Science 298 (5592): 402–406.CrossRef
3.
go back to reference George, S.M. 2010. Atomic layer deposition: An overview. Chemical Reviews 110 (1): 111–131.CrossRef George, S.M. 2010. Atomic layer deposition: An overview. Chemical Reviews 110 (1): 111–131.CrossRef
4.
go back to reference Knez, M., K. Nielsch, and L. Niinistö. 2007. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials 19 (21): 3425–3438.CrossRef Knez, M., K. Nielsch, and L. Niinistö. 2007. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials 19 (21): 3425–3438.CrossRef
5.
go back to reference Nicolau, Y.F. 1985. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Applications of Surface Science 22: 1061–1074.CrossRef Nicolau, Y.F. 1985. Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Applications of Surface Science 22: 1061–1074.CrossRef
6.
go back to reference Park, S., B.L. Clark, D.A. Keszler, J.P. Bender, J.F. Wager, T.A. Reynolds, and G.S. Herman. 2002. Low-temperature thin-film deposition and crystallization. Science 297 (5578): 65.CrossRef Park, S., B.L. Clark, D.A. Keszler, J.P. Bender, J.F. Wager, T.A. Reynolds, and G.S. Herman. 2002. Low-temperature thin-film deposition and crystallization. Science 297 (5578): 65.CrossRef
7.
go back to reference Park, S., E. DiMasi, Y.-I. Kim, W. Han, P.M. Woodward, and T. Vogt. 2006. The preparation and characterization of photocatalytically active TiO2 thin films and nanoparticles using successive-ionic-layer-adsorption-and-reaction. Thin Solid Films 515 (4): 1250–1254.CrossRef Park, S., E. DiMasi, Y.-I. Kim, W. Han, P.M. Woodward, and T. Vogt. 2006. The preparation and characterization of photocatalytically active TiO2 thin films and nanoparticles using successive-ionic-layer-adsorption-and-reaction. Thin Solid Films 515 (4): 1250–1254.CrossRef
8.
go back to reference Lindroos, S., and M. Leskelä. 2008. Successive ionic layer adsorption and reaction (SILAR) and related sequential solution-phase deposition techniques. In Solution processing of inorganic materials, Ed. Mitzi, D.B., 239–282. Wiley. Lindroos, S., and M. Leskelä. 2008. Successive ionic layer adsorption and reaction (SILAR) and related sequential solution-phase deposition techniques. In Solution processing of inorganic materials, Ed. Mitzi, D.B., 239–282. Wiley.
9.
go back to reference Brus, L.E. 1984. Electron electron and electron-hole interactions in small semiconductor crystallites—the size dependence of the lowest excited electronic state. Journal of Chemical Physics 80 (9): 4403–4409.CrossRef Brus, L.E. 1984. Electron electron and electron-hole interactions in small semiconductor crystallites—the size dependence of the lowest excited electronic state. Journal of Chemical Physics 80 (9): 4403–4409.CrossRef
10.
go back to reference Efros, A., and M. Rosen. 2000. The electronic structure of semiconductor nanocrystals. Annual Review of Materials Science 30: 475–521.CrossRef Efros, A., and M. Rosen. 2000. The electronic structure of semiconductor nanocrystals. Annual Review of Materials Science 30: 475–521.CrossRef
11.
go back to reference Smith, A.M., and S. Nie. 2010. Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research 43 (2): 190–200.CrossRef Smith, A.M., and S. Nie. 2010. Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research 43 (2): 190–200.CrossRef
12.
go back to reference Talapin, D.V., J.-S. Lee, M.V. Kovalenko, and E.V. Shevchenko. 2010. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews 110 (1): 389–458.CrossRef Talapin, D.V., J.-S. Lee, M.V. Kovalenko, and E.V. Shevchenko. 2010. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews 110 (1): 389–458.CrossRef
13.
go back to reference Erathodiyil, N., and J.Y. Ying. 2011. Functionalization of inorganic nanoparticles for bioimaging applications. Accounts of Chemical Research 44 (10): 925–935.CrossRef Erathodiyil, N., and J.Y. Ying. 2011. Functionalization of inorganic nanoparticles for bioimaging applications. Accounts of Chemical Research 44 (10): 925–935.CrossRef
14.
go back to reference Han, Z., F. Qiu, R. Eisenberg, P.L. Holland, and T.D. Krauss. 2012. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338 (6112): 1321–1324.CrossRef Han, Z., F. Qiu, R. Eisenberg, P.L. Holland, and T.D. Krauss. 2012. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338 (6112): 1321–1324.CrossRef
15.
go back to reference Lan, X., O. Voznyy, F.P. García de Arquer, M. Liu, J. Xu, A.H. Proppe, G. Walters, F. Fan, H. Tan, M. Liu, Z. Yang, S. Hoogland, and E.H. Sargent. 2016. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Letters 16 (7): 4630–4634.CrossRef Lan, X., O. Voznyy, F.P. García de Arquer, M. Liu, J. Xu, A.H. Proppe, G. Walters, F. Fan, H. Tan, M. Liu, Z. Yang, S. Hoogland, and E.H. Sargent. 2016. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Letters 16 (7): 4630–4634.CrossRef
16.
go back to reference Geyer, S.M., J.M. Scherer, N. Moloto, F.B. Jaworski, and M.G. Bawendi. 2011. Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications. ACS Nano 5 (7): 5566–5571.CrossRef Geyer, S.M., J.M. Scherer, N. Moloto, F.B. Jaworski, and M.G. Bawendi. 2011. Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications. ACS Nano 5 (7): 5566–5571.CrossRef
17.
go back to reference Anikeeva, P.O., J.E. Halpert, M.G. Bawendi, and V. Bulovic. 2007. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Letters 7 (8): 2196–2200.CrossRef Anikeeva, P.O., J.E. Halpert, M.G. Bawendi, and V. Bulovic. 2007. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Letters 7 (8): 2196–2200.CrossRef
18.
go back to reference Krause, M.M., J. Mooney, and P. Kambhampati. 2013. Chemical and thermodynamic control of the surface of semiconductor nanocrystals for designer white light emitters. ACS Nano 7 (7): 5922–5929.CrossRef Krause, M.M., J. Mooney, and P. Kambhampati. 2013. Chemical and thermodynamic control of the surface of semiconductor nanocrystals for designer white light emitters. ACS Nano 7 (7): 5922–5929.CrossRef
19.
go back to reference Stein, J.L., E.A. Mader, and B.M. Cossairt. 2016. Luminescent InP quantum dots with tunable emission by post-synthetic modification with lewis acids. Journal of Physical Chemistry Letters 7 (7): 1315–1320.CrossRef Stein, J.L., E.A. Mader, and B.M. Cossairt. 2016. Luminescent InP quantum dots with tunable emission by post-synthetic modification with lewis acids. Journal of Physical Chemistry Letters 7 (7): 1315–1320.CrossRef
20.
go back to reference Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281 (5385): 2013–2016.CrossRef Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281 (5385): 2013–2016.CrossRef
21.
go back to reference Larson, D.R., W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, and W.W. Webb. 2003. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300 (5624): 1434–1436.CrossRef Larson, D.R., W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, and W.W. Webb. 2003. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300 (5624): 1434–1436.CrossRef
22.
go back to reference Howarth, M., W.H. Liu, S. Puthenveetil, Y. Zheng, L.F. Marshall, M.M. Schmidt, K.D. Wittrup, M.G. Bawendi, and A.Y. Ting. 2008. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nature Methods 5 (5): 397–399.CrossRef Howarth, M., W.H. Liu, S. Puthenveetil, Y. Zheng, L.F. Marshall, M.M. Schmidt, K.D. Wittrup, M.G. Bawendi, and A.Y. Ting. 2008. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nature Methods 5 (5): 397–399.CrossRef
23.
go back to reference Somers, R.C., R.M. Lanning, P.T. Snee, A.B. Greytak, R.K. Jain, M.G. Bawendi, and D.G. Nocera. 2012. A Nanocrystal-based ratiometric pH sensor for natural pH ranges. Chemical Science 3 (10): 2980–2985.CrossRef Somers, R.C., R.M. Lanning, P.T. Snee, A.B. Greytak, R.K. Jain, M.G. Bawendi, and D.G. Nocera. 2012. A Nanocrystal-based ratiometric pH sensor for natural pH ranges. Chemical Science 3 (10): 2980–2985.CrossRef
24.
go back to reference Somers, R.C., M.G. Bawendi, and D.G. Nocera. 2007. CdSe nanocrystal based chem-/bio-sensors. Chemical Society Reviews 36 (4): 579–591.CrossRef Somers, R.C., M.G. Bawendi, and D.G. Nocera. 2007. CdSe nanocrystal based chem-/bio-sensors. Chemical Society Reviews 36 (4): 579–591.CrossRef
25.
go back to reference Freeman, R., and I. Willner. 2012. Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews 41 (10): 4067.CrossRef Freeman, R., and I. Willner. 2012. Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews 41 (10): 4067.CrossRef
26.
go back to reference Medintz, I.L., H.T. Uyeda, E.R. Goldman, and H. Mattoussi. 2005. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials 4 (6): 435–446.CrossRef Medintz, I.L., H.T. Uyeda, E.R. Goldman, and H. Mattoussi. 2005. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials 4 (6): 435–446.CrossRef
27.
go back to reference Petryayeva, E., W.R. Algar, and I.L. Medintz. 2013. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Applied Spectroscopy 67 (3): 215–252.CrossRef Petryayeva, E., W.R. Algar, and I.L. Medintz. 2013. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Applied Spectroscopy 67 (3): 215–252.CrossRef
28.
go back to reference Chauhan, V.P., Z. Popović, O. Chen, J. Cui, D. Fukumura, M.G. Bawendi, and R.K. Jain. 2011. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angewandte Chemie (International Edition in English) 50 (48): 11417–11420.CrossRef Chauhan, V.P., Z. Popović, O. Chen, J. Cui, D. Fukumura, M.G. Bawendi, and R.K. Jain. 2011. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angewandte Chemie (International Edition in English) 50 (48): 11417–11420.CrossRef
29.
go back to reference Leatherdale, C.A., W.-K. Woo, F.V. Mikulec, and M.G. Bawendi. 2002. On the absorption cross section of CdSe nanocrystal quantum dots. Journal of Physical Chemistry B 106 (31): 7619–7622.CrossRef Leatherdale, C.A., W.-K. Woo, F.V. Mikulec, and M.G. Bawendi. 2002. On the absorption cross section of CdSe nanocrystal quantum dots. Journal of Physical Chemistry B 106 (31): 7619–7622.CrossRef
30.
go back to reference Yu, W.W., L. Qu, W. Guo, and X. Peng. 2003. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials 15 (14): 2854–2860.CrossRef Yu, W.W., L. Qu, W. Guo, and X. Peng. 2003. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials 15 (14): 2854–2860.CrossRef
31.
go back to reference Jasieniak, J., L. Smith, J. van Embden, P. Mulvaney, and M. Califano. 2009. Re-examination of the size-dependent absorption properties of CdSe quantum dots. The Journal of Physical Chemistry C 113 (45): 19468–19474.CrossRef Jasieniak, J., L. Smith, J. van Embden, P. Mulvaney, and M. Califano. 2009. Re-examination of the size-dependent absorption properties of CdSe quantum dots. The Journal of Physical Chemistry C 113 (45): 19468–19474.CrossRef
32.
go back to reference Blanton, S.A., A. Dehestani, P.C. Lin, and P. Guyot-Sionnest. 1994. Photoluminescence of single semiconductor nanocrystallites by two-photon excitation microscopy. Chemical Physics Letters 229 (3): 317–322.CrossRef Blanton, S.A., A. Dehestani, P.C. Lin, and P. Guyot-Sionnest. 1994. Photoluminescence of single semiconductor nanocrystallites by two-photon excitation microscopy. Chemical Physics Letters 229 (3): 317–322.CrossRef
33.
go back to reference Wu, X., H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, and M.P. Bruchez. 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology 21 (1): 41–46.CrossRef Wu, X., H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, and M.P. Bruchez. 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology 21 (1): 41–46.CrossRef
34.
go back to reference Murray, C., D. Norris, and M. Bawendi. 1993. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 115 (19): 8706–8715.CrossRef Murray, C., D. Norris, and M. Bawendi. 1993. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 115 (19): 8706–8715.CrossRef
35.
go back to reference Clark, M.D., S.K. Kumar, J.S. Owen, and E.M. Chan. 2011. Focusing nanocrystal size distributions via production control. Nano Letters 11 (5): 1976–1980.CrossRef Clark, M.D., S.K. Kumar, J.S. Owen, and E.M. Chan. 2011. Focusing nanocrystal size distributions via production control. Nano Letters 11 (5): 1976–1980.CrossRef
36.
go back to reference Peng, X., M.C. Schlamp, A.V. Kadavanich, and A.P. Alivisatos. 1997. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society 119 (30): 7019–7029.CrossRef Peng, X., M.C. Schlamp, A.V. Kadavanich, and A.P. Alivisatos. 1997. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society 119 (30): 7019–7029.CrossRef
37.
go back to reference Hines, M.A., and P. Guyot-Sionnest. 1996. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry 100 (2): 468–471.CrossRef Hines, M.A., and P. Guyot-Sionnest. 1996. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry 100 (2): 468–471.CrossRef
38.
go back to reference Dabbousi, B.O., J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi. 1997. (CdSe)ZnS core—shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B 101 (46): 9463–9475.CrossRef Dabbousi, B.O., J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi. 1997. (CdSe)ZnS core—shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B 101 (46): 9463–9475.CrossRef
39.
go back to reference Xie, R., U. Kolb, J. Li, T. Basche, and A. Mews. 2005. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. Journal of the American Chemical Society 127 (20): 7480–7488.CrossRef Xie, R., U. Kolb, J. Li, T. Basche, and A. Mews. 2005. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. Journal of the American Chemical Society 127 (20): 7480–7488.CrossRef
40.
go back to reference Greytak, A.B., P.M. Allen, W. Liu, J. Zhao, E.R. Young, Z. Popović, B.J. Walker, D.G. Nocera, and M.G. Bawendi. 2012. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chemical Science 3 (6): 2028–2034.CrossRef Greytak, A.B., P.M. Allen, W. Liu, J. Zhao, E.R. Young, Z. Popović, B.J. Walker, D.G. Nocera, and M.G. Bawendi. 2012. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chemical Science 3 (6): 2028–2034.CrossRef
41.
go back to reference Chen, O., J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, and M.G. Bawendi. 2013. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nature Materials 12 (5): 445–451.CrossRef Chen, O., J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, and M.G. Bawendi. 2013. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nature Materials 12 (5): 445–451.CrossRef
42.
go back to reference Cui, J., A.P. Beyler, L.F. Marshall, O. Chen, D.K. Harris, D.D. Wanger, X. Brokmann, and M.G. Bawendi. 2013. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nature Chemistry 5: 602–606.CrossRef Cui, J., A.P. Beyler, L.F. Marshall, O. Chen, D.K. Harris, D.D. Wanger, X. Brokmann, and M.G. Bawendi. 2013. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nature Chemistry 5: 602–606.CrossRef
43.
go back to reference Dubertret, B., P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber. 2002. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298 (5599): 1759–1762.CrossRef Dubertret, B., P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber. 2002. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298 (5599): 1759–1762.CrossRef
44.
go back to reference Susumu, K., E. Oh, J.B. Delehanty, J.B. Blanco-Canosa, B.J. Johnson, V. Jain, W.J. Hervey, W.R. Algar, K. Boeneman, P.E. Dawson, and I.L. Medintz. 2011. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. Journal of the American Chemical Society 133 (24): 9480–9496.CrossRef Susumu, K., E. Oh, J.B. Delehanty, J.B. Blanco-Canosa, B.J. Johnson, V. Jain, W.J. Hervey, W.R. Algar, K. Boeneman, P.E. Dawson, and I.L. Medintz. 2011. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. Journal of the American Chemical Society 133 (24): 9480–9496.CrossRef
45.
go back to reference Liu, W., M. Howarth, A.B. Greytak, Y. Zheng, D.G. Nocera, A.Y. Ting, and M.G. Bawendi. 2008. Compact biocompatible quantum dots functionalized for cellular imaging. Journal of the American Chemical Society 130 (4): 1274–1284.CrossRef Liu, W., M. Howarth, A.B. Greytak, Y. Zheng, D.G. Nocera, A.Y. Ting, and M.G. Bawendi. 2008. Compact biocompatible quantum dots functionalized for cellular imaging. Journal of the American Chemical Society 130 (4): 1274–1284.CrossRef
46.
go back to reference Liu, W., A.B. Greytak, J. Lee, C.R. Wong, J. Park, L.F. Marshall, W. Jiang, P.N. Curtin, A.Y. Ting, D.G. Nocera, D. Fukumura, R.K. Jain, and M.G. Bawendi. 2010. Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. Journal of the American Chemical Society 132 (2): 472–483.CrossRef Liu, W., A.B. Greytak, J. Lee, C.R. Wong, J. Park, L.F. Marshall, W. Jiang, P.N. Curtin, A.Y. Ting, D.G. Nocera, D. Fukumura, R.K. Jain, and M.G. Bawendi. 2010. Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. Journal of the American Chemical Society 132 (2): 472–483.CrossRef
47.
go back to reference Palui, G., H.B. Na, and H. Mattoussi. 2012. Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals. Langmuir 28 (5): 2761–2772.CrossRef Palui, G., H.B. Na, and H. Mattoussi. 2012. Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals. Langmuir 28 (5): 2761–2772.CrossRef
48.
go back to reference Viswanath, A., Y. Shen, A.N. Green, R. Tan, A.B. Greytak, and B.C. Benicewicz. 2014. Copolymerization and synthesis of multiply binding histamine ligands for the robust functionalization of quantum dots. Macromolecules 47 (23): 8137–8144.CrossRef Viswanath, A., Y. Shen, A.N. Green, R. Tan, A.B. Greytak, and B.C. Benicewicz. 2014. Copolymerization and synthesis of multiply binding histamine ligands for the robust functionalization of quantum dots. Macromolecules 47 (23): 8137–8144.CrossRef
49.
go back to reference McBride, J., J. Treadway, L.C. Feldman, S.J. Pennycook, and S.J. Rosenthal. 2006. Structural basis for near unity quantum yield core/shell nanostructures. Nano Letters 6 (7): 1496–1501.CrossRef McBride, J., J. Treadway, L.C. Feldman, S.J. Pennycook, and S.J. Rosenthal. 2006. Structural basis for near unity quantum yield core/shell nanostructures. Nano Letters 6 (7): 1496–1501.CrossRef
50.
go back to reference Orfield, N.J., J.R. McBride, J.D. Keene, L.M. Davis, and S.J. Rosenthal. 2015. Correlation of atomic structure and photoluminescence of the same quantum dot: Pinpointing surface and internal defects that inhibit photoluminescence. ACS Nano 9 (1): 831–839.CrossRef Orfield, N.J., J.R. McBride, J.D. Keene, L.M. Davis, and S.J. Rosenthal. 2015. Correlation of atomic structure and photoluminescence of the same quantum dot: Pinpointing surface and internal defects that inhibit photoluminescence. ACS Nano 9 (1): 831–839.CrossRef
51.
go back to reference Li, J.J., Y.A. Wang, W.Z. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, and X.G. Peng. 2003. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. Journal of the American Chemical Society 125 (41): 12567–12575.CrossRef Li, J.J., Y.A. Wang, W.Z. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, and X.G. Peng. 2003. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. Journal of the American Chemical Society 125 (41): 12567–12575.CrossRef
52.
go back to reference Arnspang, E.C., J.R. Brewer, and B.C. Lagerholm. 2012. Multi-color single particle tracking with quantum dots. PLoS ONE 7 (11): e48521.CrossRef Arnspang, E.C., J.R. Brewer, and B.C. Lagerholm. 2012. Multi-color single particle tracking with quantum dots. PLoS ONE 7 (11): e48521.CrossRef
53.
go back to reference Choi, H.S., W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, and J.V. Frangioni. 2007. Renal clearance of quantum dots. Nature Biotechnology 25 (10): 1165–1170.CrossRef Choi, H.S., W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, and J.V. Frangioni. 2007. Renal clearance of quantum dots. Nature Biotechnology 25 (10): 1165–1170.CrossRef
54.
go back to reference Burns, A.A., J. Vider, H. Ow, E. Herz, O. Penate-Medina, M. Baumgart, S.M. Larson, U. Wiesner, and M. Bradbury. 2009. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Letters 9 (1): 442–448.CrossRef Burns, A.A., J. Vider, H. Ow, E. Herz, O. Penate-Medina, M. Baumgart, S.M. Larson, U. Wiesner, and M. Bradbury. 2009. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Letters 9 (1): 442–448.CrossRef
55.
go back to reference Koberling, F., U. Kolb, G. Philipp, I. Potapova, T. Basché, and A. Mews. 2003. Fluorescence anisotropy and crystal structure of individual semiconductor nanocrystals. Journal of Physical Chemistry B 107 (30): 7463–7471.CrossRef Koberling, F., U. Kolb, G. Philipp, I. Potapova, T. Basché, and A. Mews. 2003. Fluorescence anisotropy and crystal structure of individual semiconductor nanocrystals. Journal of Physical Chemistry B 107 (30): 7463–7471.CrossRef
56.
go back to reference Cassette, E., B. Mahler, J.-M. Guigner, G. Patriarche, B. Dubertret, and T. Pons. 2012. Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. ACS Nano 6 (8): 6741–6750.CrossRef Cassette, E., B. Mahler, J.-M. Guigner, G. Patriarche, B. Dubertret, and T. Pons. 2012. Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. ACS Nano 6 (8): 6741–6750.CrossRef
57.
go back to reference Tice, D.B., D.J. Weinberg, N. Mathew, R.P.H. Chang, and E.A. Weiss. 2013. Measurement of wavelength-dependent polarization character in the absorption anisotropies of ensembles of CdSe nanorods. Journal of Physical Chemistry C 117 (25): 13289–13296.CrossRef Tice, D.B., D.J. Weinberg, N. Mathew, R.P.H. Chang, and E.A. Weiss. 2013. Measurement of wavelength-dependent polarization character in the absorption anisotropies of ensembles of CdSe nanorods. Journal of Physical Chemistry C 117 (25): 13289–13296.CrossRef
58.
go back to reference Diroll, B.T., T. Dadosh, A. Koschitzky, Y.E. Goldman, and C.B. Murray. 2013. Interpreting the energy-dependent anisotropy of colloidal nanorods using ensemble and single-particle spectroscopy. Journal of Physical Chemistry C 117 (45): 23928–23937.CrossRef Diroll, B.T., T. Dadosh, A. Koschitzky, Y.E. Goldman, and C.B. Murray. 2013. Interpreting the energy-dependent anisotropy of colloidal nanorods using ensemble and single-particle spectroscopy. Journal of Physical Chemistry C 117 (45): 23928–23937.CrossRef
59.
go back to reference Park, K., Z. Deutsch, J.J. Li, D. Oron, and S. Weiss. 2012. Single molecule quantum-confined stark effect measurements of semiconductor nanoparticles at room temperature. ACS Nano 6 (11): 10013–10023.CrossRef Park, K., Z. Deutsch, J.J. Li, D. Oron, and S. Weiss. 2012. Single molecule quantum-confined stark effect measurements of semiconductor nanoparticles at room temperature. ACS Nano 6 (11): 10013–10023.CrossRef
60.
go back to reference Kloepfer, J.A., N. Cohen, and J.L. Nadeau. 2004. FRET between CdSe quantum dots in lipid vesicles and water- and lipid-soluble dyes. Journal of Physical Chemistry B 108 (44): 17042–17049.CrossRef Kloepfer, J.A., N. Cohen, and J.L. Nadeau. 2004. FRET between CdSe quantum dots in lipid vesicles and water- and lipid-soluble dyes. Journal of Physical Chemistry B 108 (44): 17042–17049.CrossRef
61.
go back to reference Lo, S.S., T. Mirkovic, C.-H. Chuang, C. Burda, and G.D. Scholes. 2011. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Advanced Materials 23 (2): 180–197.CrossRef Lo, S.S., T. Mirkovic, C.-H. Chuang, C. Burda, and G.D. Scholes. 2011. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Advanced Materials 23 (2): 180–197.CrossRef
62.
go back to reference Marshall, J.D., and M.J. Schnitzer. 2013. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 7 (5): 4601–4609.CrossRef Marshall, J.D., and M.J. Schnitzer. 2013. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 7 (5): 4601–4609.CrossRef
63.
go back to reference Tomaselli, M., J.L. Yarger, M. Bruchez, R.H. Havlin, D. DeGraw, A. Pines, and A.P. Alivisatos. 1999. NMR study of InP quantum dots: Surface structure and size effects. The Journal of Chemical Physics 110 (18): 8861–8864.CrossRef Tomaselli, M., J.L. Yarger, M. Bruchez, R.H. Havlin, D. DeGraw, A. Pines, and A.P. Alivisatos. 1999. NMR study of InP quantum dots: Surface structure and size effects. The Journal of Chemical Physics 110 (18): 8861–8864.CrossRef
64.
go back to reference Rosenthal, S.J., J. McBride, S.J. Pennycook, and L.C. Feldman. 2007. Synthesis, surface studies, composition and structural characterization of CdSe, core/shell, and biologically active nanocrystals. Surface Science Reports 62 (4): 111–157.CrossRef Rosenthal, S.J., J. McBride, S.J. Pennycook, and L.C. Feldman. 2007. Synthesis, surface studies, composition and structural characterization of CdSe, core/shell, and biologically active nanocrystals. Surface Science Reports 62 (4): 111–157.CrossRef
65.
go back to reference Rempel, J.Y., B.L. Trout, M.G. Bawendi, and K.F. Jensen. 2005. Properties of the CdSe(0001), (0001), and (1120) single crystal surfaces: Relaxation, reconstruction, and adatom and admolecule adsorption. Journal of Physical Chemistry B 109 (41): 19320–19328.CrossRef Rempel, J.Y., B.L. Trout, M.G. Bawendi, and K.F. Jensen. 2005. Properties of the CdSe(0001), (0001), and (1120) single crystal surfaces: Relaxation, reconstruction, and adatom and admolecule adsorption. Journal of Physical Chemistry B 109 (41): 19320–19328.CrossRef
66.
go back to reference Rempel, J.Y., B.L. Trout, M.G. Bawendi, and K.F. Jensen. 2006. Density functional theory study of ligand binding on CdSe (0001), (0001), and (1120) single crystal relaxed and reconstructed surfaces: Implications for nanocrystalline growth. Journal of Physical Chemistry B 110 (36): 18007–18016.CrossRef Rempel, J.Y., B.L. Trout, M.G. Bawendi, and K.F. Jensen. 2006. Density functional theory study of ligand binding on CdSe (0001), (0001), and (1120) single crystal relaxed and reconstructed surfaces: Implications for nanocrystalline growth. Journal of Physical Chemistry B 110 (36): 18007–18016.CrossRef
67.
go back to reference Gong, K., and D.F. Kelley. 2014. A predictive model of shell morphology in CdSe/CdS core/shell quantum dots. The Journal of Chemical Physics 141 (19): 194704.CrossRef Gong, K., and D.F. Kelley. 2014. A predictive model of shell morphology in CdSe/CdS core/shell quantum dots. The Journal of Chemical Physics 141 (19): 194704.CrossRef
68.
go back to reference Milliron, D.J., S.M. Hughes, Y. Cui, L. Manna, J.B. Li, L.W. Wang, and A.P. Alivisatos. 2004. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430 (6996): 190–195.CrossRef Milliron, D.J., S.M. Hughes, Y. Cui, L. Manna, J.B. Li, L.W. Wang, and A.P. Alivisatos. 2004. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430 (6996): 190–195.CrossRef
69.
go back to reference Talapin, D.V., R. Koeppe, S. Götzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, and H. Weller. 2003. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Letters 3 (12): 1677–1681.CrossRef Talapin, D.V., R. Koeppe, S. Götzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, and H. Weller. 2003. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Letters 3 (12): 1677–1681.CrossRef
70.
go back to reference Talapin, D.V., J.H. Nelson, E.V. Shevchenko, S. Aloni, B. Sadtler, and A.P. Alivisatos. 2007. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Letters 7 (10): 2951–2959.CrossRef Talapin, D.V., J.H. Nelson, E.V. Shevchenko, S. Aloni, B. Sadtler, and A.P. Alivisatos. 2007. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Letters 7 (10): 2951–2959.CrossRef
71.
go back to reference Carbone, L., C. Nobile, M. De Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, and L. Manna. 2007. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Letters 7 (10): 2942–2950.CrossRef Carbone, L., C. Nobile, M. De Giorgi, F.D. Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, and L. Manna. 2007. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Letters 7 (10): 2942–2950.CrossRef
72.
go back to reference Choi, C.L., K.J. Koski, S. Sivasankar, and A.P. Alivisatos. 2009. Strain-dependent photoluminescence behavior of CdSe/CdS nanocrystals with spherical, linear, and branched topologies. Nano Letters 9 (10): 3544–3549.CrossRef Choi, C.L., K.J. Koski, S. Sivasankar, and A.P. Alivisatos. 2009. Strain-dependent photoluminescence behavior of CdSe/CdS nanocrystals with spherical, linear, and branched topologies. Nano Letters 9 (10): 3544–3549.CrossRef
73.
go back to reference Borys, N.J., M.J. Walter, J. Huang, D.V. Talapin, and J.M. Lupton. 2010. The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals. Science 330 (6009): 1371–1374.CrossRef Borys, N.J., M.J. Walter, J. Huang, D.V. Talapin, and J.M. Lupton. 2010. The role of particle morphology in interfacial energy transfer in CdSe/CdS heterostructure nanocrystals. Science 330 (6009): 1371–1374.CrossRef
74.
go back to reference Guo, Y., S.R. Alvarado, J.D. Barclay, and J. Vela. 2013. Shape-programmed nanofabrication: Understanding the reactivity of dichalcogenide precursors. ACS Nano 7 (4): 3616–3626.CrossRef Guo, Y., S.R. Alvarado, J.D. Barclay, and J. Vela. 2013. Shape-programmed nanofabrication: Understanding the reactivity of dichalcogenide precursors. ACS Nano 7 (4): 3616–3626.CrossRef
75.
go back to reference Ruberu, T.P.A., and J. Vela. 2011. Expanding the one-dimensional CdS–CdSe composition landscape: Axially anisotropic CdS1−xSex nanorods. ACS Nano 5 (7): 5775–5784.CrossRef Ruberu, T.P.A., and J. Vela. 2011. Expanding the one-dimensional CdS–CdSe composition landscape: Axially anisotropic CdS1−xSex nanorods. ACS Nano 5 (7): 5775–5784.CrossRef
76.
go back to reference Ruberu, T.P.A., H.R. Albright, B. Callis, B. Ward, J. Cisneros, H.-J. Fan, and J. Vela. 2012. Molecular control of the nanoscale: Effect of phosphine-chalcogenide reactivity on CdS–CdSe nanocrystal composition and morphology. ACS Nano 6 (6): 5348–5359.CrossRef Ruberu, T.P.A., H.R. Albright, B. Callis, B. Ward, J. Cisneros, H.-J. Fan, and J. Vela. 2012. Molecular control of the nanoscale: Effect of phosphine-chalcogenide reactivity on CdS–CdSe nanocrystal composition and morphology. ACS Nano 6 (6): 5348–5359.CrossRef
77.
go back to reference Vela, J. 2013. Molecular chemistry to the fore: New insights into the fascinating world of photoactive colloidal semiconductor nanocrystals. Journal of Physical Chemistry Letters 4 (4): 653–668.CrossRef Vela, J. 2013. Molecular chemistry to the fore: New insights into the fascinating world of photoactive colloidal semiconductor nanocrystals. Journal of Physical Chemistry Letters 4 (4): 653–668.CrossRef
78.
go back to reference Kirsanova, M., A. Nemchinov, N.N. Hewa-Kasakarage, N. Schmall, and M. Zamkov. 2009. Synthesis of ZnSe/CdS/ZnSe nanobarbells showing photoinduced charge separation. Chemistry of Materials 21 (18): 4305–4309.CrossRef Kirsanova, M., A. Nemchinov, N.N. Hewa-Kasakarage, N. Schmall, and M. Zamkov. 2009. Synthesis of ZnSe/CdS/ZnSe nanobarbells showing photoinduced charge separation. Chemistry of Materials 21 (18): 4305–4309.CrossRef
79.
go back to reference Mahler, B., B. Nadal, C. Bouet, G. Patriarche, and B. Dubertret. 2012. Core/shell colloidal semiconductor nanoplatelets. Journal of the American Chemical Society 134 (45): 18591–18598.CrossRef Mahler, B., B. Nadal, C. Bouet, G. Patriarche, and B. Dubertret. 2012. Core/shell colloidal semiconductor nanoplatelets. Journal of the American Chemical Society 134 (45): 18591–18598.CrossRef
80.
go back to reference Müller, J., J.M. Lupton, A.L. Rogach, J. Feldmann, D.V. Talapin, and H. Weller. 2005. Monitoring surface charge migration in the spectral dynamics of single CdSe∕CdS nanodot/nanorod heterostructures. Physical Review B 72 (20): 205339.CrossRef Müller, J., J.M. Lupton, A.L. Rogach, J. Feldmann, D.V. Talapin, and H. Weller. 2005. Monitoring surface charge migration in the spectral dynamics of single CdSe∕CdS nanodot/nanorod heterostructures. Physical Review B 72 (20): 205339.CrossRef
81.
go back to reference Müller, J., J.M. Lupton, P.G. Lagoudakis, F. Schindler, R. Koeppe, A.L. Rogach, J. Feldmann, D.V. Talapin, and H. Weller. 2005. Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Letters 5 (10): 2044–2049.CrossRef Müller, J., J.M. Lupton, P.G. Lagoudakis, F. Schindler, R. Koeppe, A.L. Rogach, J. Feldmann, D.V. Talapin, and H. Weller. 2005. Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Letters 5 (10): 2044–2049.CrossRef
82.
go back to reference Mauser, C., T. Limmer, E. Da Como, K. Becker, A.L. Rogach, J. Feldmann, and D.V. Talapin. 2008. Anisotropic optical emission of single CdSe/CdS tetrapod heterostructures: Evidence for a wavefunction symmetry breaking. Physical Review B 77 (15): 153303.CrossRef Mauser, C., T. Limmer, E. Da Como, K. Becker, A.L. Rogach, J. Feldmann, and D.V. Talapin. 2008. Anisotropic optical emission of single CdSe/CdS tetrapod heterostructures: Evidence for a wavefunction symmetry breaking. Physical Review B 77 (15): 153303.CrossRef
83.
go back to reference Lutich, A.A., C. Mauser, E. Da Como, J. Huang, A. Vaneski, D.V. Talapin, A.L. Rogach, and J. Feldmann. 2010. Multiexcitonic dual emission in CdSe/CdS tetrapods and nanorods. Nano Letters 10 (11): 4646–4650.CrossRef Lutich, A.A., C. Mauser, E. Da Como, J. Huang, A. Vaneski, D.V. Talapin, A.L. Rogach, and J. Feldmann. 2010. Multiexcitonic dual emission in CdSe/CdS tetrapods and nanorods. Nano Letters 10 (11): 4646–4650.CrossRef
84.
go back to reference Teitelboim, A., N. Meir, M. Kazes, and D. Oron. 2016. Colloidal double quantum dots. Accounts of Chemical Research 49 (5): 902–910. Teitelboim, A., N. Meir, M. Kazes, and D. Oron. 2016. Colloidal double quantum dots. Accounts of Chemical Research 49 (5): 902–910.
85.
go back to reference Saba, M., S. Minniberger, F. Quochi, J. Roither, M. Marceddu, A. Gocalinska, M.V. Kovalenko, D.V. Talapin, W. Heiss, A. Mura, and G. Bongiovanni. 2009. Exciton-exciton interaction and optical gain in colloidal CdSe/CdS dot/rod nanocrystals. Advanced Materials 21 (48): 4942–4946.CrossRef Saba, M., S. Minniberger, F. Quochi, J. Roither, M. Marceddu, A. Gocalinska, M.V. Kovalenko, D.V. Talapin, W. Heiss, A. Mura, and G. Bongiovanni. 2009. Exciton-exciton interaction and optical gain in colloidal CdSe/CdS dot/rod nanocrystals. Advanced Materials 21 (48): 4942–4946.CrossRef
86.
go back to reference Khon, E., K. Lambright, R.S. Khnayzer, P. Moroz, D. Perera, E. Butaeva, S. Lambright, F.N. Castellano, and M. Zamkov. 2013. Improving the catalytic activity of semiconductor nanocrystals through selective domain etching. Nano Letters 13 (5): 2016–2023.CrossRef Khon, E., K. Lambright, R.S. Khnayzer, P. Moroz, D. Perera, E. Butaeva, S. Lambright, F.N. Castellano, and M. Zamkov. 2013. Improving the catalytic activity of semiconductor nanocrystals through selective domain etching. Nano Letters 13 (5): 2016–2023.CrossRef
87.
go back to reference Wu, W.-Y., S. Chakrabortty, C.K.L. Chang, A. Guchhait, M. Lin, and Y. Chan. 2014. Promoting 2D growth in colloidal transition metal sulfide semiconductor nanostructures via halide ions. Chemistry of Materials 26 (21): 6120–6126.CrossRef Wu, W.-Y., S. Chakrabortty, C.K.L. Chang, A. Guchhait, M. Lin, and Y. Chan. 2014. Promoting 2D growth in colloidal transition metal sulfide semiconductor nanostructures via halide ions. Chemistry of Materials 26 (21): 6120–6126.CrossRef
88.
go back to reference Kortan, A.R., R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, and L.E. Brus. 1990. Nucleation and growth of cadmium selenide on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. Journal of the American Chemical Society 112 (4): 1327–1332.CrossRef Kortan, A.R., R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, and L.E. Brus. 1990. Nucleation and growth of cadmium selenide on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. Journal of the American Chemical Society 112 (4): 1327–1332.CrossRef
89.
go back to reference Galland, C., Y. Ghosh, A. Steinbrück, M. Sykora, J.A. Hollingsworth, V.I. Klimov, and H. Htoon. 2011. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479 (7372): 203–207.CrossRef Galland, C., Y. Ghosh, A. Steinbrück, M. Sykora, J.A. Hollingsworth, V.I. Klimov, and H. Htoon. 2011. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479 (7372): 203–207.CrossRef
90.
go back to reference Mahler, B., N. Lequeux, and B. Dubertret. 2010. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. Journal of the American Chemical Society 132 (3): 953–959.CrossRef Mahler, B., N. Lequeux, and B. Dubertret. 2010. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. Journal of the American Chemical Society 132 (3): 953–959.CrossRef
91.
go back to reference Nan, W., Y. Niu, H. Qin, F. Cui, Y. Yang, R. Lai, W. Lin, and X. Peng. 2012. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. Journal of the American Chemical Society 134 (48): 19685–19693.CrossRef Nan, W., Y. Niu, H. Qin, F. Cui, Y. Yang, R. Lai, W. Lin, and X. Peng. 2012. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. Journal of the American Chemical Society 134 (48): 19685–19693.CrossRef
92.
go back to reference Park, Y.-S., A.V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J.A. Hollingsworth, V.I. Klimov, and H. Htoon. 2011. Near-Unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy. Physical Review Letters 106 (18): 187401.CrossRef Park, Y.-S., A.V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. García-Santamaría, J.A. Hollingsworth, V.I. Klimov, and H. Htoon. 2011. Near-Unity quantum yields of biexciton emission from CdSe/CdS nanocrystals measured using single-particle spectroscopy. Physical Review Letters 106 (18): 187401.CrossRef
93.
go back to reference Htoon, H., A.V. Malko, D. Bussian, J. Vela, Y. Chen, J.A. Hollingsworth, and V.I. Klimov. 2010. Highly emissive multiexcitons in steady-state photoluminescence of individual “giant” CdSe/CdS core/shell nanocrystals. Nano Letters 10 (7): 2401–2407.CrossRef Htoon, H., A.V. Malko, D. Bussian, J. Vela, Y. Chen, J.A. Hollingsworth, and V.I. Klimov. 2010. Highly emissive multiexcitons in steady-state photoluminescence of individual “giant” CdSe/CdS core/shell nanocrystals. Nano Letters 10 (7): 2401–2407.CrossRef
94.
go back to reference Pal, B.N., Y. Ghosh, S. Brovelli, R. Laocharoensuk, V.I. Klimov, J.A. Hollingsworth, and H. Htoon. 2012. “Giant” CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: Strong influence of shell thickness on light-emitting diode performance. Nano Letters 12 (1): 331–336.CrossRef Pal, B.N., Y. Ghosh, S. Brovelli, R. Laocharoensuk, V.I. Klimov, J.A. Hollingsworth, and H. Htoon. 2012. “Giant” CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: Strong influence of shell thickness on light-emitting diode performance. Nano Letters 12 (1): 331–336.CrossRef
95.
go back to reference Chen, Y., J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, and J.A. Hollingsworth. 2008. Giant multishell CdSe nanocrystal quantum dots with suppressed blinking. Journal of the American Chemical Society 130 (15): 5026–5027.CrossRef Chen, Y., J. Vela, H. Htoon, J.L. Casson, D.J. Werder, D.A. Bussian, V.I. Klimov, and J.A. Hollingsworth. 2008. Giant multishell CdSe nanocrystal quantum dots with suppressed blinking. Journal of the American Chemical Society 130 (15): 5026–5027.CrossRef
96.
go back to reference Pons, T., N. Lequeux, B. Mahler, S. Sasnouski, A. Fragola, and B. Dubertret. 2009. Synthesis of near-infrared-emitting, water-soluble CdTeSe/CdZnS core/shell quantum dots. Chemistry of Materials 21 (8): 1418–1424.CrossRef Pons, T., N. Lequeux, B. Mahler, S. Sasnouski, A. Fragola, and B. Dubertret. 2009. Synthesis of near-infrared-emitting, water-soluble CdTeSe/CdZnS core/shell quantum dots. Chemistry of Materials 21 (8): 1418–1424.CrossRef
97.
go back to reference Sapra, S., J. Poppe, and A. Eychmüller. 2007. CdSe nanorod synthesis: A new approach. Small 3 (11): 1886–1888.CrossRef Sapra, S., J. Poppe, and A. Eychmüller. 2007. CdSe nanorod synthesis: A new approach. Small 3 (11): 1886–1888.CrossRef
98.
go back to reference Boles, M.A., D. Ling, T. Hyeon, and D.V. Talapin. 2016. The surface science of nanocrystals. Nature Materials 15 (2): 141–153.CrossRef Boles, M.A., D. Ling, T. Hyeon, and D.V. Talapin. 2016. The surface science of nanocrystals. Nature Materials 15 (2): 141–153.CrossRef
99.
go back to reference Peterson, M.D., L.C. Cass, R.D. Harris, K. Edme, K. Sung, and E.A. Weiss. 2014. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots. Annual Review of Physical Chemistry 65 (1): 317–339.CrossRef Peterson, M.D., L.C. Cass, R.D. Harris, K. Edme, K. Sung, and E.A. Weiss. 2014. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots. Annual Review of Physical Chemistry 65 (1): 317–339.CrossRef
100.
go back to reference Green, M. 2010. The nature of quantum dot capping ligands. Journal of Materials Chemistry 20 (28): 5797–5809.CrossRef Green, M. 2010. The nature of quantum dot capping ligands. Journal of Materials Chemistry 20 (28): 5797–5809.CrossRef
101.
go back to reference Guo, Y., K. Marchuk, S. Sampat, R. Abraham, N. Fang, A.V. Malko, and J. Vela. 2012. Unique challenges accompany thick-shell CdSe/nCdS (N > 10) nanocrystal synthesis. Journal of Physical Chemistry C 116 (4): 2791–2800.CrossRef Guo, Y., K. Marchuk, S. Sampat, R. Abraham, N. Fang, A.V. Malko, and J. Vela. 2012. Unique challenges accompany thick-shell CdSe/nCdS (N > 10) nanocrystal synthesis. Journal of Physical Chemistry C 116 (4): 2791–2800.CrossRef
102.
go back to reference Moreels, I., K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J.C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens. 2009. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3 (10): 3023–3030.CrossRef Moreels, I., K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J.C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens. 2009. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3 (10): 3023–3030.CrossRef
103.
go back to reference Talapin, D.V., N. Gaponik, H. Borchert, A.L. Rogach, M. Haase, and H. Weller. 2002. Etching of colloidal InP nanocrystals with fluorides: Photochemical nature of the process resulting in high photoluminescence efficiency. Journal of Physical Chemistry B 106 (49): 12659–12663.CrossRef Talapin, D.V., N. Gaponik, H. Borchert, A.L. Rogach, M. Haase, and H. Weller. 2002. Etching of colloidal InP nanocrystals with fluorides: Photochemical nature of the process resulting in high photoluminescence efficiency. Journal of Physical Chemistry B 106 (49): 12659–12663.CrossRef
104.
go back to reference van Embden, J., J. Jasieniak, and P. Mulvaney. 2009. Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: The effects of core size and shell thickness. Journal of the American Chemical Society 131 (40): 14299–14309.CrossRef van Embden, J., J. Jasieniak, and P. Mulvaney. 2009. Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: The effects of core size and shell thickness. Journal of the American Chemical Society 131 (40): 14299–14309.CrossRef
105.
go back to reference Ithurria, S., and D.V. Talapin. 2012. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. Journal of the American Chemical Society 134 (45): 18585–18590.CrossRef Ithurria, S., and D.V. Talapin. 2012. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. Journal of the American Chemical Society 134 (45): 18585–18590.CrossRef
106.
go back to reference Hassinen, A., I. Moreels, K. De Nolf, P.F. Smet, J.C. Martins, and Z. Hens. 2012. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. Journal of the American Chemical Society 134 (51): 20705–20712.CrossRef Hassinen, A., I. Moreels, K. De Nolf, P.F. Smet, J.C. Martins, and Z. Hens. 2012. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. Journal of the American Chemical Society 134 (51): 20705–20712.CrossRef
107.
go back to reference Anderson, N.C., M.P. Hendricks, J.J. Choi, and J.S. Owen. 2013. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. Journal of the American Chemical Society 135 (49): 18536–18548.CrossRef Anderson, N.C., M.P. Hendricks, J.J. Choi, and J.S. Owen. 2013. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. Journal of the American Chemical Society 135 (49): 18536–18548.CrossRef
108.
go back to reference Shen, Y., M.Y. Gee, R. Tan, P.J. Pellechia, and A.B. Greytak. 2013. Purification of quantum dots by gel permeation chromatography and the effect of excess ligands on shell growth and ligand exchange. Chemistry of Materials 25 (14): 2838–2848.CrossRef Shen, Y., M.Y. Gee, R. Tan, P.J. Pellechia, and A.B. Greytak. 2013. Purification of quantum dots by gel permeation chromatography and the effect of excess ligands on shell growth and ligand exchange. Chemistry of Materials 25 (14): 2838–2848.CrossRef
109.
go back to reference Lhuillier, E., P. Hease, S. Ithurria, and B. Dubertret. 2014. Selective electrophoretic deposition of CdSe nanoplatelets. Chemistry of Materials 26 (15): 4514–4520.CrossRef Lhuillier, E., P. Hease, S. Ithurria, and B. Dubertret. 2014. Selective electrophoretic deposition of CdSe nanoplatelets. Chemistry of Materials 26 (15): 4514–4520.CrossRef
110.
go back to reference Razgoniaeva, N., L. Carrillo, D. Burchfield, P. Moroz, P. Adhikari, P. Yadav, D. Khon, and M. Zamkov. 2016. Colloidal synthesis of monodisperse semiconductor nanocrystals through saturated ionic layer adsorption. Chemistry of Materials 28 (8): 2823–2833.CrossRef Razgoniaeva, N., L. Carrillo, D. Burchfield, P. Moroz, P. Adhikari, P. Yadav, D. Khon, and M. Zamkov. 2016. Colloidal synthesis of monodisperse semiconductor nanocrystals through saturated ionic layer adsorption. Chemistry of Materials 28 (8): 2823–2833.CrossRef
111.
go back to reference Xu, J., D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A.Y. Wang. 2006. Synthesis and surface modification of PbSe/PbS core-shell nanocrystals for potential device applications. Nanotechnology 17 (21): 5428–5434.CrossRef Xu, J., D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A.Y. Wang. 2006. Synthesis and surface modification of PbSe/PbS core-shell nanocrystals for potential device applications. Nanotechnology 17 (21): 5428–5434.CrossRef
112.
go back to reference Pourret, A., P. Guyot-Sionnest, and J.W. Elam. 2009. Atomic layer deposition of ZnO in quantum dot thin films. Advanced Materials 21 (2): 232–235.CrossRef Pourret, A., P. Guyot-Sionnest, and J.W. Elam. 2009. Atomic layer deposition of ZnO in quantum dot thin films. Advanced Materials 21 (2): 232–235.CrossRef
113.
go back to reference Zherebetskyy, D., M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang. 2014. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344 (6190): 1380–1384.CrossRef Zherebetskyy, D., M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang. 2014. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344 (6190): 1380–1384.CrossRef
114.
go back to reference García-Rodríguez, R., M.P. Hendricks, B.M. Cossairt, H. Liu, and J.S. Owen. 2013. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chemistry of Materials 25 (8): 1233–1249.CrossRef García-Rodríguez, R., M.P. Hendricks, B.M. Cossairt, H. Liu, and J.S. Owen. 2013. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chemistry of Materials 25 (8): 1233–1249.CrossRef
115.
go back to reference Anderson, N.C., and J.S. Owen. 2013. Soluble, chloride-terminated CdSe nanocrystals: Ligand exchange monitored by 1H and 31P NMR spectroscopy. Chemistry of Materials 25 (1): 69–76.CrossRef Anderson, N.C., and J.S. Owen. 2013. Soluble, chloride-terminated CdSe nanocrystals: Ligand exchange monitored by 1H and 31P NMR spectroscopy. Chemistry of Materials 25 (1): 69–76.CrossRef
116.
go back to reference Thomson, J.W., K. Nagashima, P.M. Macdonald, and G.A. Ozin. 2011. From sulfur—amine solutions to metal sulfide nanocrystals: Peering into the oleylamine—sulfur black box. Journal of the American Chemical Society 133 (13): 5036–5041.CrossRef Thomson, J.W., K. Nagashima, P.M. Macdonald, and G.A. Ozin. 2011. From sulfur—amine solutions to metal sulfide nanocrystals: Peering into the oleylamine—sulfur black box. Journal of the American Chemical Society 133 (13): 5036–5041.CrossRef
117.
go back to reference Hendricks, M.P., M.P. Campos, G.T. Cleveland, I. Jen-La Plante, and J.S. Owen. 2015. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 348 (6240): 1226–1230.CrossRef Hendricks, M.P., M.P. Campos, G.T. Cleveland, I. Jen-La Plante, and J.S. Owen. 2015. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 348 (6240): 1226–1230.CrossRef
118.
go back to reference van Embden, J., J. Jasieniak, D.E. Gomez, P. Mulvaney, and M. Giersig. 2007. Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals. Australian Journal of Chemistry 60 (7): 457–471.CrossRef van Embden, J., J. Jasieniak, D.E. Gomez, P. Mulvaney, and M. Giersig. 2007. Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals. Australian Journal of Chemistry 60 (7): 457–471.CrossRef
119.
go back to reference Liu, H.T., J.S. Owen, and A.P. Alivisatos. 2007. Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. Journal of the American Chemical Society 129 (2): 305–312.CrossRef Liu, H.T., J.S. Owen, and A.P. Alivisatos. 2007. Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. Journal of the American Chemical Society 129 (2): 305–312.CrossRef
120.
go back to reference Wei, H.H.-Y., C.M. Evans, B.D. Swartz, A.J. Neukirch, J. Young, O.V. Prezhdo, and T.D. Krauss. 2012. Colloidal semiconductor quantum dots with tunable surface composition. Nano Letters 12 (9): 4465–4471.CrossRef Wei, H.H.-Y., C.M. Evans, B.D. Swartz, A.J. Neukirch, J. Young, O.V. Prezhdo, and T.D. Krauss. 2012. Colloidal semiconductor quantum dots with tunable surface composition. Nano Letters 12 (9): 4465–4471.CrossRef
121.
go back to reference Sowers, K.L., Z. Hou, J.J. Peterson, B. Swartz, S. Pal, O. Prezhdo, and T.D. Krauss. 2016. Photophysical properties of CdSe/CdS core/shell quantum dots with tunable surface composition. Chemical Physics 471: 24–31.CrossRef Sowers, K.L., Z. Hou, J.J. Peterson, B. Swartz, S. Pal, O. Prezhdo, and T.D. Krauss. 2016. Photophysical properties of CdSe/CdS core/shell quantum dots with tunable surface composition. Chemical Physics 471: 24–31.CrossRef
122.
go back to reference Kaniyankandy, S., S. Rawalekar, and H.N. Ghosh. 2013. Charge carrier cascade in Type II CdSe–CdTe graded core–shell interface. Journal of Materials Chemistry C 1 (15): 2755–2763.CrossRef Kaniyankandy, S., S. Rawalekar, and H.N. Ghosh. 2013. Charge carrier cascade in Type II CdSe–CdTe graded core–shell interface. Journal of Materials Chemistry C 1 (15): 2755–2763.CrossRef
123.
go back to reference Lee, H., M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Graetzel, and M.K. Nazeeruddin. 2009. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Letters 9 (12): 4221–4227.CrossRef Lee, H., M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Graetzel, and M.K. Nazeeruddin. 2009. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Letters 9 (12): 4221–4227.CrossRef
124.
go back to reference Becker, M.A., J.G. Radich, B.A. Bunker, and P.V. Kamat. 2014. How does a SILAR CdSe film grow? Tuning the deposition steps to suppress interfacial charge recombination in solar cells. Journal of Physical Chemistry Letters 5 (9): 1575–1582.CrossRef Becker, M.A., J.G. Radich, B.A. Bunker, and P.V. Kamat. 2014. How does a SILAR CdSe film grow? Tuning the deposition steps to suppress interfacial charge recombination in solar cells. Journal of Physical Chemistry Letters 5 (9): 1575–1582.CrossRef
125.
go back to reference Jasieniak, J., and P. Mulvaney. 2007. From Cd-rich to Se-rich—the manipulation of CdSe nanocrystal surface stoichiometry. Journal of the American Chemical Society 129 (10): 2841–2848.CrossRef Jasieniak, J., and P. Mulvaney. 2007. From Cd-rich to Se-rich—the manipulation of CdSe nanocrystal surface stoichiometry. Journal of the American Chemical Society 129 (10): 2841–2848.CrossRef
126.
go back to reference Shen, Y., R. Tan, M.Y. Gee, and A.B. Greytak. 2015. Quantum yield regeneration: Influence of neutral ligand binding on photophysical properties in colloidal core/shell quantum dots. ACS Nano 9 (3): 3345–3359.CrossRef Shen, Y., R. Tan, M.Y. Gee, and A.B. Greytak. 2015. Quantum yield regeneration: Influence of neutral ligand binding on photophysical properties in colloidal core/shell quantum dots. ACS Nano 9 (3): 3345–3359.CrossRef
127.
go back to reference Tan, R., D.A. Blom, S. Ma, and A.B. Greytak. 2013. Probing surface saturation conditions in alternating layer growth of CdSe/CdS core/shell quantum dots. Chemistry of Materials 25 (18): 3724–3736.CrossRef Tan, R., D.A. Blom, S. Ma, and A.B. Greytak. 2013. Probing surface saturation conditions in alternating layer growth of CdSe/CdS core/shell quantum dots. Chemistry of Materials 25 (18): 3724–3736.CrossRef
128.
go back to reference Morris-Cohen, A.J., M. Malicki, M.D. Peterson, J.W.J. Slavin, and E.A. Weiss. 2013. Chemical, structural, and quantitative analysis of the ligand shells of colloidal quantum dots. Chemistry of Materials 25 (8): 1155–1165.CrossRef Morris-Cohen, A.J., M. Malicki, M.D. Peterson, J.W.J. Slavin, and E.A. Weiss. 2013. Chemical, structural, and quantitative analysis of the ligand shells of colloidal quantum dots. Chemistry of Materials 25 (8): 1155–1165.CrossRef
129.
go back to reference Caldwell, M.A., A.E. Albers, S.C. Levy, T.E. Pick, B.E. Cohen, B.A. Helms, and D.J. Milliron. 2011. Driving oxygen coordinated ligand exchange at nanocrystal surfaces using trialkylsilylated chalcogenides. Chemical Communications 47 (1): 556–558.CrossRef Caldwell, M.A., A.E. Albers, S.C. Levy, T.E. Pick, B.E. Cohen, B.A. Helms, and D.J. Milliron. 2011. Driving oxygen coordinated ligand exchange at nanocrystal surfaces using trialkylsilylated chalcogenides. Chemical Communications 47 (1): 556–558.CrossRef
130.
go back to reference Tan, R., Y. Shen, S.K. Roberts, M.Y. Gee, D.A. Blom, and A.B. Greytak. 2015. Reducing competition by coordinating solvent promotes morphological control in alternating layer growth of CdSe/CdS core/shell quantum dots. Chemistry of Materials 27 (21): 7468–7480.CrossRef Tan, R., Y. Shen, S.K. Roberts, M.Y. Gee, D.A. Blom, and A.B. Greytak. 2015. Reducing competition by coordinating solvent promotes morphological control in alternating layer growth of CdSe/CdS core/shell quantum dots. Chemistry of Materials 27 (21): 7468–7480.CrossRef
131.
go back to reference Fedin, I., and D.V. Talapin. 2014. Probing the surface of colloidal nanomaterials with potentiometry in situ. Journal of the American Chemical Society 136 (32): 11228–11231.CrossRef Fedin, I., and D.V. Talapin. 2014. Probing the surface of colloidal nanomaterials with potentiometry in situ. Journal of the American Chemical Society 136 (32): 11228–11231.CrossRef
132.
go back to reference Todescato, F., A. Minotto, R. Signorini, J.J. Jasieniak, and R. Bozio. 2013. Investigation into the heterostructure interface of CdSe-based core-shell quantum dots using surface-enhanced raman spectroscopy. ACS Nano 7 (8): 6649–6657.CrossRef Todescato, F., A. Minotto, R. Signorini, J.J. Jasieniak, and R. Bozio. 2013. Investigation into the heterostructure interface of CdSe-based core-shell quantum dots using surface-enhanced raman spectroscopy. ACS Nano 7 (8): 6649–6657.CrossRef
133.
go back to reference Dias, E.A., S.L. Sewall, and P. Kambhampati. 2007. Light harvesting and carrier transport in core/barrier/shell semiconductor nanocrystals. Journal of Physical Chemistry C 111 (2): 708–713.CrossRef Dias, E.A., S.L. Sewall, and P. Kambhampati. 2007. Light harvesting and carrier transport in core/barrier/shell semiconductor nanocrystals. Journal of Physical Chemistry C 111 (2): 708–713.CrossRef
134.
go back to reference Aharoni, A., T. Mokari, I. Popov, and U. Banin. 2006. Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence. Journal of the American Chemical Society 128 (1): 257–264.CrossRef Aharoni, A., T. Mokari, I. Popov, and U. Banin. 2006. Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence. Journal of the American Chemical Society 128 (1): 257–264.CrossRef
135.
go back to reference Snee, P.T., Y.H. Chan, D.G. Nocera, and M.G. Bawendi. 2005. Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite. Advanced Materials 17 (9): 1131–1136.CrossRef Snee, P.T., Y.H. Chan, D.G. Nocera, and M.G. Bawendi. 2005. Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite. Advanced Materials 17 (9): 1131–1136.CrossRef
136.
go back to reference Liu, W., H.S. Choi, J.P. Zimmer, E. Tanaka, J.V. Frangioni, and M. Bawendi. 2007. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. Journal of the American Chemical Society 129 (47): 14530–14531.CrossRef Liu, W., H.S. Choi, J.P. Zimmer, E. Tanaka, J.V. Frangioni, and M. Bawendi. 2007. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. Journal of the American Chemical Society 129 (47): 14530–14531.CrossRef
137.
go back to reference Peng, X., L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos. 2000. Shape control of CdSe nanocrystals. Nature 404 (6773): 59–61.CrossRef Peng, X., L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos. 2000. Shape control of CdSe nanocrystals. Nature 404 (6773): 59–61.CrossRef
138.
go back to reference Manna, L., E.C. Scher, L.-S. Li, and A.P. Alivisatos. 2002. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. Journal of the American Chemical Society 124 (24): 7136–7145.CrossRef Manna, L., E.C. Scher, L.-S. Li, and A.P. Alivisatos. 2002. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. Journal of the American Chemical Society 124 (24): 7136–7145.CrossRef
139.
go back to reference Wang, W., S. Banerjee, S. Jia, M.L. Steigerwald, and I.P. Herman. 2007. Ligand control of growth, morphology, and capping structure of colloidal CdSe nanorods. Chemistry of Materials 19 (10): 2573–2580.CrossRef Wang, W., S. Banerjee, S. Jia, M.L. Steigerwald, and I.P. Herman. 2007. Ligand control of growth, morphology, and capping structure of colloidal CdSe nanorods. Chemistry of Materials 19 (10): 2573–2580.CrossRef
140.
go back to reference Wang, F., and W.E. Buhro. 2012. Morphology control of cadmium selenide nanocrystals: Insights into the roles of di-n-octylphosphine oxide (DOPO) and di-n-octylphosphinic acid (DOPA). Journal of the American Chemical Society 134 (11): 5369–5380.CrossRef Wang, F., and W.E. Buhro. 2012. Morphology control of cadmium selenide nanocrystals: Insights into the roles of di-n-octylphosphine oxide (DOPO) and di-n-octylphosphinic acid (DOPA). Journal of the American Chemical Society 134 (11): 5369–5380.CrossRef
141.
go back to reference Deutsch, Z., L. Neeman, and D. Oron. 2013. Luminescence upconversion in colloidal double quantum dots. Nature Nanotechnology 8 (9): 649–653.CrossRef Deutsch, Z., L. Neeman, and D. Oron. 2013. Luminescence upconversion in colloidal double quantum dots. Nature Nanotechnology 8 (9): 649–653.CrossRef
142.
go back to reference Joo, J., J.S. Son, S.G. Kwon, J.H. Yu, and T. Hyeon. 2006. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. Journal of the American Chemical Society 128 (17): 5632–5633.CrossRef Joo, J., J.S. Son, S.G. Kwon, J.H. Yu, and T. Hyeon. 2006. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. Journal of the American Chemical Society 128 (17): 5632–5633.CrossRef
143.
go back to reference Liu, Y.-H., V.L. Wayman, P.C. Gibbons, R.A. Loomis, and W.E. Buhro. 2010. Origin of high photoluminescence efficiencies in CdSe quantum belts. Nano Letters 10 (1): 352–357.CrossRef Liu, Y.-H., V.L. Wayman, P.C. Gibbons, R.A. Loomis, and W.E. Buhro. 2010. Origin of high photoluminescence efficiencies in CdSe quantum belts. Nano Letters 10 (1): 352–357.CrossRef
144.
go back to reference Ithurria, S., and B. Dubertret. 2008. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. Journal of the American Chemical Society 130 (49): 16504–16505.CrossRef Ithurria, S., and B. Dubertret. 2008. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. Journal of the American Chemical Society 130 (49): 16504–16505.CrossRef
145.
go back to reference Ithurria, S., M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, and A.L. Efros. 2011. Colloidal nanoplatelets with two-dimensional electronic structure. Nature Materials 10 (12): 936–941.CrossRef Ithurria, S., M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, and A.L. Efros. 2011. Colloidal nanoplatelets with two-dimensional electronic structure. Nature Materials 10 (12): 936–941.CrossRef
146.
go back to reference Tessier, M.D., P. Spinicelli, D. Dupont, G. Patriarche, S. Ithurria, and B. Dubertret. 2014. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Letters 14 (1): 207–213.CrossRef Tessier, M.D., P. Spinicelli, D. Dupont, G. Patriarche, S. Ithurria, and B. Dubertret. 2014. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Letters 14 (1): 207–213.CrossRef
147.
go back to reference Vogel, R., P. Hoyer, and H. Weller. 1994. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. Journal of Physical Chemistry 98 (12): 3183–3188.CrossRef Vogel, R., P. Hoyer, and H. Weller. 1994. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. Journal of Physical Chemistry 98 (12): 3183–3188.CrossRef
148.
go back to reference Tak, Y., S.J. Hong, J.S. Lee, and K. Yong. 2009. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. Journal of Materials Chemistry 19 (33): 5945–5951.CrossRef Tak, Y., S.J. Hong, J.S. Lee, and K. Yong. 2009. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. Journal of Materials Chemistry 19 (33): 5945–5951.CrossRef
149.
go back to reference Jiang, Y., C. Li, W. Cao, Y. Jiang, S. Shang, and C. Xia. 2015. Large scale fabrication of well-aligned CdS/P-Si shell/core nanowire arrays for photodetectors using solution methods. Physical Chemistry Chemical Physics: PCCP 17 (26): 16784–16790.CrossRef Jiang, Y., C. Li, W. Cao, Y. Jiang, S. Shang, and C. Xia. 2015. Large scale fabrication of well-aligned CdS/P-Si shell/core nanowire arrays for photodetectors using solution methods. Physical Chemistry Chemical Physics: PCCP 17 (26): 16784–16790.CrossRef
150.
go back to reference Kinder, E., P. Moroz, G. Diederich, A. Johnson, M. Kirsanova, A. Nemchinov, T. O’Connor, D. Roth, and M. Zamkov. 2011. Fabrication of all-inorganic nanocrystal solids through matrix encapsulation of nanocrystal arrays. Journal of the American Chemical Society 133 (50): 20488–20499.CrossRef Kinder, E., P. Moroz, G. Diederich, A. Johnson, M. Kirsanova, A. Nemchinov, T. O’Connor, D. Roth, and M. Zamkov. 2011. Fabrication of all-inorganic nanocrystal solids through matrix encapsulation of nanocrystal arrays. Journal of the American Chemical Society 133 (50): 20488–20499.CrossRef
151.
go back to reference Kim, D.K., A.T. Fafarman, B.T. Diroll, S.H. Chan, T.R. Gordon, C.B. Murray, and C.R. Kagan. 2013. Solution-based stoichiometric control over charge transport in nanocrystalline CdSe devices. ACS Nano 7 (10): 8760–8770.CrossRef Kim, D.K., A.T. Fafarman, B.T. Diroll, S.H. Chan, T.R. Gordon, C.B. Murray, and C.R. Kagan. 2013. Solution-based stoichiometric control over charge transport in nanocrystalline CdSe devices. ACS Nano 7 (10): 8760–8770.CrossRef
152.
go back to reference Oh, S.J., N.E. Berry, J.-H. Choi, E.A. Gaulding, H. Lin, T. Paik, B.T. Diroll, S. Muramoto, C.B. Murray, and C.R. Kagan. 2014. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Letters 14 (3): 1559–1566.CrossRef Oh, S.J., N.E. Berry, J.-H. Choi, E.A. Gaulding, H. Lin, T. Paik, B.T. Diroll, S. Muramoto, C.B. Murray, and C.R. Kagan. 2014. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Letters 14 (3): 1559–1566.CrossRef
153.
go back to reference Deutsch, Z., O. Schwartz, R. Tenne, R. Popovitz-Biro, and D. Oron. 2012. Two-color antibunching from band-gap engineered colloidal semiconductor nanocrystals. Nano Letters 12 (6): 2948–2952.CrossRef Deutsch, Z., O. Schwartz, R. Tenne, R. Popovitz-Biro, and D. Oron. 2012. Two-color antibunching from band-gap engineered colloidal semiconductor nanocrystals. Nano Letters 12 (6): 2948–2952.CrossRef
154.
go back to reference Tessier, M.D., B. Mahler, B. Nadal, H. Heuclin, S. Pedetti, and B. Dubertret. 2013. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Letters 13 (7): 3321–3328.CrossRef Tessier, M.D., B. Mahler, B. Nadal, H. Heuclin, S. Pedetti, and B. Dubertret. 2013. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Letters 13 (7): 3321–3328.CrossRef
155.
go back to reference Liu, Y.-H., F. Wang, J. Hoy, V.L. Wayman, L.K. Steinberg, R.A. Loomis, and W.E. Buhro. 2012. Bright core-shell semiconductor quantum wires. Journal of the American Chemical Society 134 (45): 18797–18803.CrossRef Liu, Y.-H., F. Wang, J. Hoy, V.L. Wayman, L.K. Steinberg, R.A. Loomis, and W.E. Buhro. 2012. Bright core-shell semiconductor quantum wires. Journal of the American Chemical Society 134 (45): 18797–18803.CrossRef
156.
go back to reference Wu, K., H. Zhu, and T. Lian. 2015. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Accounts of Chemical Research 48 (3): 851–859.CrossRef Wu, K., H. Zhu, and T. Lian. 2015. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Accounts of Chemical Research 48 (3): 851–859.CrossRef
157.
go back to reference Lhuillier, E., S. Pedetti, S. Ithurria, B. Nadal, H. Heuclin, and B. Dubertret. 2015. Two-dimensional colloidal metal chalcogenides semiconductors: Synthesis, spectroscopy, and applications. Accounts of Chemical Research 48 (1): 22–30.CrossRef Lhuillier, E., S. Pedetti, S. Ithurria, B. Nadal, H. Heuclin, and B. Dubertret. 2015. Two-dimensional colloidal metal chalcogenides semiconductors: Synthesis, spectroscopy, and applications. Accounts of Chemical Research 48 (1): 22–30.CrossRef
158.
go back to reference Selinsky, R.S., Q. Ding, M.S. Faber, J.C. Wright, and S. Jin. 2013. Quantum dot nanoscale heterostructures for solar energy conversion. Chemical Society Reviews 42 (7): 2963–2985.CrossRef Selinsky, R.S., Q. Ding, M.S. Faber, J.C. Wright, and S. Jin. 2013. Quantum dot nanoscale heterostructures for solar energy conversion. Chemical Society Reviews 42 (7): 2963–2985.CrossRef
159.
go back to reference Hayden, O., A.B. Greytak, and D.C. Bell. 2005. Core-shell nanowire light-emitting diodes. Advanced Materials 17 (6): 701–704.CrossRef Hayden, O., A.B. Greytak, and D.C. Bell. 2005. Core-shell nanowire light-emitting diodes. Advanced Materials 17 (6): 701–704.CrossRef
160.
go back to reference Bouet, C., D. Laufer, B. Mahler, B. Nadal, H. Heuclin, S. Pedetti, G. Patriarche, and B. Dubertret. 2014. Synthesis of zinc and lead chalcogenide core and core/shell nanoplatelets using sequential cation exchange reactions. Chemistry of Materials 26 (9): 3002–3008.CrossRef Bouet, C., D. Laufer, B. Mahler, B. Nadal, H. Heuclin, S. Pedetti, G. Patriarche, and B. Dubertret. 2014. Synthesis of zinc and lead chalcogenide core and core/shell nanoplatelets using sequential cation exchange reactions. Chemistry of Materials 26 (9): 3002–3008.CrossRef
161.
go back to reference Li, H., M. Zanella, A. Genovese, M. Povia, A. Falqui, C. Giannini, and L. Manna. 2011. Sequential cation exchange in nanocrystals: Preservation of crystal phase and formation of metastable phases. Nano Letters 11 (11): 4964–4970.CrossRef Li, H., M. Zanella, A. Genovese, M. Povia, A. Falqui, C. Giannini, and L. Manna. 2011. Sequential cation exchange in nanocrystals: Preservation of crystal phase and formation of metastable phases. Nano Letters 11 (11): 4964–4970.CrossRef
162.
go back to reference Yeltik, A., S. Delikanli, M. Olutas, Y. Kelestemur, B. Guzelturk, and H.V. Demir. 2015. Experimental determination of the absorption cross-section and molar extinction coefficient of colloidal cdse nanoplatelets. Journal of Physical Chemistry C 119 (47): 26768–26775.CrossRef Yeltik, A., S. Delikanli, M. Olutas, Y. Kelestemur, B. Guzelturk, and H.V. Demir. 2015. Experimental determination of the absorption cross-section and molar extinction coefficient of colloidal cdse nanoplatelets. Journal of Physical Chemistry C 119 (47): 26768–26775.CrossRef
163.
go back to reference Vietmeyer, F., M.P. McDonald, and M. Kuno. 2012. Single nanowire microscopy and spectroscopy. Journal of Physical Chemistry C 116 (23): 12379–12396.CrossRef Vietmeyer, F., M.P. McDonald, and M. Kuno. 2012. Single nanowire microscopy and spectroscopy. Journal of Physical Chemistry C 116 (23): 12379–12396.CrossRef
164.
go back to reference Yeh, C.-Y., Z.W. Lu, S. Froyen, and A. Zunger. 1992. Zincblende-wurtzite polytypism in semiconductors. Physical Review B 46 (16): 10086–10097.CrossRef Yeh, C.-Y., Z.W. Lu, S. Froyen, and A. Zunger. 1992. Zincblende-wurtzite polytypism in semiconductors. Physical Review B 46 (16): 10086–10097.CrossRef
165.
go back to reference Williams, E.S., K.J. Major, A. Tobias, D. Woodall, V. Morales, C. Lippincott, P.J. Moyer, and M. Jones. 2013. Characterizing the influence of TOPO on exciton recombination dynamics in colloidal CdSe quantum dots. Journal of Physical Chemistry C 117 (8): 4227–4237.CrossRef Williams, E.S., K.J. Major, A. Tobias, D. Woodall, V. Morales, C. Lippincott, P.J. Moyer, and M. Jones. 2013. Characterizing the influence of TOPO on exciton recombination dynamics in colloidal CdSe quantum dots. Journal of Physical Chemistry C 117 (8): 4227–4237.CrossRef
166.
go back to reference Sitt, A., A. Salant, G. Menagen, and U. Banin. 2011. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Letters 11 (5): 2054–2060.CrossRef Sitt, A., A. Salant, G. Menagen, and U. Banin. 2011. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Letters 11 (5): 2054–2060.CrossRef
167.
go back to reference Li, Z., and X. Peng. 2011. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. Journal of the American Chemical Society 133 (17): 6578–6586.CrossRef Li, Z., and X. Peng. 2011. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. Journal of the American Chemical Society 133 (17): 6578–6586.CrossRef
168.
go back to reference Lieber, C.M. 2011. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bulletin 36 (12): 1052–1063.CrossRef Lieber, C.M. 2011. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bulletin 36 (12): 1052–1063.CrossRef
169.
go back to reference Yang, P., R. Yan, and M. Fardy. 2010. Semiconductor nanowire: What’s next? Nano Letters 10 (5): 1529–1536.CrossRef Yang, P., R. Yan, and M. Fardy. 2010. Semiconductor nanowire: What’s next? Nano Letters 10 (5): 1529–1536.CrossRef
170.
go back to reference Wang, F., A. Dong, J. Sun, R. Tang, H. Yu, and W.E. Buhro. 2006. Solution—liquid—solid growth of semiconductor nanowires. Inorganic Chemistry 45 (19): 7511–7521.CrossRef Wang, F., A. Dong, J. Sun, R. Tang, H. Yu, and W.E. Buhro. 2006. Solution—liquid—solid growth of semiconductor nanowires. Inorganic Chemistry 45 (19): 7511–7521.CrossRef
171.
go back to reference Whang, D., S. Jin, Y. Wu, and C.M. Lieber. 2003. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Letters 3 (9): 1255–1259.CrossRef Whang, D., S. Jin, Y. Wu, and C.M. Lieber. 2003. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Letters 3 (9): 1255–1259.CrossRef
172.
go back to reference Dong, Y, G. Yu, M.C. McAlpine, W. Lu, and C.M. Lieber. 2008. Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Letters. Dong, Y, G. Yu, M.C. McAlpine, W. Lu, and C.M. Lieber. 2008. Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Letters.
173.
go back to reference Boettcher, S.W., J.M. Spurgeon, M.C. Putnam, E.L. Warren, D.B. Turner-Evans, M.D. Kelzenberg, J.R. Maiolo, H.A. Atwater, and N.S. Lewis. 2010. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 327 (5962): 185–187.CrossRef Boettcher, S.W., J.M. Spurgeon, M.C. Putnam, E.L. Warren, D.B. Turner-Evans, M.D. Kelzenberg, J.R. Maiolo, H.A. Atwater, and N.S. Lewis. 2010. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 327 (5962): 185–187.CrossRef
174.
go back to reference Kempa, T.J., R.W. Day, S.-K. Kim, H.-G. Park, and C.M. Lieber. 2013. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy & Environmental Science 6 (3): 719–733.CrossRef Kempa, T.J., R.W. Day, S.-K. Kim, H.-G. Park, and C.M. Lieber. 2013. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy & Environmental Science 6 (3): 719–733.CrossRef
175.
go back to reference Patolsky, F., G. Zheng, and C.M. Lieber. 2006. Nanowire sensors for medicine and the life sciences. Nanomedicine 1 (1): 51–65.CrossRef Patolsky, F., G. Zheng, and C.M. Lieber. 2006. Nanowire sensors for medicine and the life sciences. Nanomedicine 1 (1): 51–65.CrossRef
176.
go back to reference Wagner, R.S., and W.C. Ellis. 1053. Vapor-liquid-solid mechanism of crystal growth and its application to silicon. Transactions of the Metallurgical Society of AIME 1965: 233. Wagner, R.S., and W.C. Ellis. 1053. Vapor-liquid-solid mechanism of crystal growth and its application to silicon. Transactions of the Metallurgical Society of AIME 1965: 233.
177.
go back to reference Hiruma, K., M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, and H. Kakibayashi. 1993. GaAs freestanding quantum-size wires. Journal of Applied Physics 74 (5): 3162–3171.CrossRef Hiruma, K., M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, and H. Kakibayashi. 1993. GaAs freestanding quantum-size wires. Journal of Applied Physics 74 (5): 3162–3171.CrossRef
178.
go back to reference Morales, A.M., and C.M. Lieber. 1998. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279 (5348): 208–211.CrossRef Morales, A.M., and C.M. Lieber. 1998. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279 (5348): 208–211.CrossRef
179.
go back to reference Duan, X.F., and C.M. Lieber. 2000. General synthesis of compound semiconductor nanowires. Advanced Materials 12 (4): 298–302.CrossRef Duan, X.F., and C.M. Lieber. 2000. General synthesis of compound semiconductor nanowires. Advanced Materials 12 (4): 298–302.CrossRef
180.
go back to reference Wu, Y., Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, and C.M. Lieber. 2004. Controlled growth and structures of molecular-scale silicon nanowires. Nano Letters 4 (3): 433–436.CrossRef Wu, Y., Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, and C.M. Lieber. 2004. Controlled growth and structures of molecular-scale silicon nanowires. Nano Letters 4 (3): 433–436.CrossRef
181.
go back to reference Heath, J.R., and F.K. Legoues. 1993. A liquid solution synthesis of single-crystal germanium quantum wires. Chemical Physics Letters 208 (3–4): 263–268.CrossRef Heath, J.R., and F.K. Legoues. 1993. A liquid solution synthesis of single-crystal germanium quantum wires. Chemical Physics Letters 208 (3–4): 263–268.CrossRef
182.
go back to reference Koren, E., J.K. Hyun, U. Givan, E.R. Hemesath, L.J. Lauhon, and Y. Rosenwaks. 2011. Obtaining uniform dopant distributions in VLS-grown Si nanowires. Nano Letters 11 (1): 183–187.CrossRef Koren, E., J.K. Hyun, U. Givan, E.R. Hemesath, L.J. Lauhon, and Y. Rosenwaks. 2011. Obtaining uniform dopant distributions in VLS-grown Si nanowires. Nano Letters 11 (1): 183–187.CrossRef
183.
go back to reference Barrelet, C.J., Y. Wu, D.C. Bell, and C.M. Lieber. 2003. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Journal of the American Chemical Society 125 (38): 11498–11499.CrossRef Barrelet, C.J., Y. Wu, D.C. Bell, and C.M. Lieber. 2003. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Journal of the American Chemical Society 125 (38): 11498–11499.CrossRef
184.
go back to reference Greytak, A.B., L.J. Lauhon, M.S. Gudiksen, and C.M. Lieber. 2004. Growth and transport properties of complementary germanium nanowire field-effect transistors. Applied Physics Letters 84 (21): 4176–4178.CrossRef Greytak, A.B., L.J. Lauhon, M.S. Gudiksen, and C.M. Lieber. 2004. Growth and transport properties of complementary germanium nanowire field-effect transistors. Applied Physics Letters 84 (21): 4176–4178.CrossRef
185.
go back to reference Lauhon, L.J., M.S. Gudiksen, and C.M. Lieber. 1819. Semiconductor nanowire heterostructures. Philos Transact A Math Phys Eng Sci 2004 (362): 1247–1260. Lauhon, L.J., M.S. Gudiksen, and C.M. Lieber. 1819. Semiconductor nanowire heterostructures. Philos Transact A Math Phys Eng Sci 2004 (362): 1247–1260.
186.
go back to reference Lu, W., J. Xiang, B.P. Timko, Y. Wu, and C.M. Lieber. 2005. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proceedings of the National Academy of Sciences of the United States of America 102 (29): 10046–10051.CrossRef Lu, W., J. Xiang, B.P. Timko, Y. Wu, and C.M. Lieber. 2005. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proceedings of the National Academy of Sciences of the United States of America 102 (29): 10046–10051.CrossRef
187.
go back to reference Li, Y., J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom, and C.M. Lieber. 2006. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Letters 6 (7): 1468–1473.CrossRef Li, Y., J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom, and C.M. Lieber. 2006. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Letters 6 (7): 1468–1473.CrossRef
188.
go back to reference Goebl, J.A., R.W. Black, J. Puthussery, J. Giblin, T.H. Kosel, and M. Kuno. 2008. Solution-based II-VI core/shell nanowire heterostructures. Journal of the American Chemical Society 130 (44): 14822–14833.CrossRef Goebl, J.A., R.W. Black, J. Puthussery, J. Giblin, T.H. Kosel, and M. Kuno. 2008. Solution-based II-VI core/shell nanowire heterostructures. Journal of the American Chemical Society 130 (44): 14822–14833.CrossRef
189.
go back to reference Protasenko, V., S. Gordeyev, and M. Kuno. 2007. Spatial and intensity modulation of nanowire emission induced by mobile charges. Journal of American Chemical Society. Protasenko, V., S. Gordeyev, and M. Kuno. 2007. Spatial and intensity modulation of nanowire emission induced by mobile charges. Journal of American Chemical Society.
190.
go back to reference Li, Z., X. Ma, Q. Sun, Z. Wang, J. Liu, Z. Zhu, S.Z. Qiao, S.C. Smith, G.M. Lu, and A. Mews. 2010. Synthesis and characterization of colloidal core-shell semiconductor nanowires. European Journal of Inorganic Chemistry 2010 (27): 4325–4331.CrossRef Li, Z., X. Ma, Q. Sun, Z. Wang, J. Liu, Z. Zhu, S.Z. Qiao, S.C. Smith, G.M. Lu, and A. Mews. 2010. Synthesis and characterization of colloidal core-shell semiconductor nanowires. European Journal of Inorganic Chemistry 2010 (27): 4325–4331.CrossRef
191.
go back to reference McLaurin, E.J., L.R. Bradshaw, and D.R. Gamelin. 2013. Dual-emitting nanoscale temperature sensors. Chemistry of Materials 25 (8): 1283–1292.CrossRef McLaurin, E.J., L.R. Bradshaw, and D.R. Gamelin. 2013. Dual-emitting nanoscale temperature sensors. Chemistry of Materials 25 (8): 1283–1292.CrossRef
192.
go back to reference Sapra, S., S. Mayilo, T.A. Klar, A.L. Rogach, and J. Feldmann. 2007. Bright white-light emission from semiconductor nanocrystals: By chance and by design. Advanced Materials 19 (4): 569–572.CrossRef Sapra, S., S. Mayilo, T.A. Klar, A.L. Rogach, and J. Feldmann. 2007. Bright white-light emission from semiconductor nanocrystals: By chance and by design. Advanced Materials 19 (4): 569–572.CrossRef
193.
go back to reference Purves, W.K., G.H. Orians, and H.C. Heller. 1995. Life: The science of biology, 4th ed.; W. H. Freeman & Co. Purves, W.K., G.H. Orians, and H.C. Heller. 1995. Life: The science of biology, 4th ed.; W. H. Freeman & Co.
194.
go back to reference Zhang, F., A.M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth. 2007. Circuit-breakers: Optical technologies for probing neural signals and systems. Nature Reviews Neuroscience 8 (8): 577–581.CrossRef Zhang, F., A.M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth. 2007. Circuit-breakers: Optical technologies for probing neural signals and systems. Nature Reviews Neuroscience 8 (8): 577–581.CrossRef
195.
go back to reference Villalba-Galea, C., W. Sandtner, D. Dimitrov, H. Mutoh, T. Knöpfel, and F. Bezanilla. 2009. Charge movement of a voltage-sensitiive fluorescent protein. Biophysical Journal 96 (2): L19.CrossRef Villalba-Galea, C., W. Sandtner, D. Dimitrov, H. Mutoh, T. Knöpfel, and F. Bezanilla. 2009. Charge movement of a voltage-sensitiive fluorescent protein. Biophysical Journal 96 (2): L19.CrossRef
196.
go back to reference Patrick, M.J., L.A. Ernst, A.S. Waggoner, D. Thai, D. Tai, and G. Salama. 2007. Enhanced aqueous solubility of long wavelength voltage-sensitive dyes by covalent attachment of polyethylene glycol. Organic & Biomolecular Chemistry 5 (20): 3347.CrossRef Patrick, M.J., L.A. Ernst, A.S. Waggoner, D. Thai, D. Tai, and G. Salama. 2007. Enhanced aqueous solubility of long wavelength voltage-sensitive dyes by covalent attachment of polyethylene glycol. Organic & Biomolecular Chemistry 5 (20): 3347.CrossRef
197.
go back to reference Empedocles, S.A., and M.G. Bawendi. 1997. Quantum-confined stark effect in single cdse nanocrystallite quantum dots. Science 278 (5346): 2114–2117.CrossRef Empedocles, S.A., and M.G. Bawendi. 1997. Quantum-confined stark effect in single cdse nanocrystallite quantum dots. Science 278 (5346): 2114–2117.CrossRef
198.
go back to reference Mattheyses, A.L., M. Kampmann, C.E. Atkinson, and S.M. Simon. 2010. Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex. Biophysical Journal 99 (6): 1706–1717.CrossRef Mattheyses, A.L., M. Kampmann, C.E. Atkinson, and S.M. Simon. 2010. Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex. Biophysical Journal 99 (6): 1706–1717.CrossRef
199.
go back to reference DeMay, B.S., N. Noda, A.S. Gladfelter, and R. Oldenbourg. 2011. Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast. Biophysical Journal 101 (4): 985–994.CrossRef DeMay, B.S., N. Noda, A.S. Gladfelter, and R. Oldenbourg. 2011. Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast. Biophysical Journal 101 (4): 985–994.CrossRef
200.
go back to reference Norris, D.J., A.L. Efros, M. Rosen, and M.G. Bawendi. 1996. Size dependence of exciton fine structure in CdSe quantum dots. Physical Review B 53 (24): 16347–16354.CrossRef Norris, D.J., A.L. Efros, M. Rosen, and M.G. Bawendi. 1996. Size dependence of exciton fine structure in CdSe quantum dots. Physical Review B 53 (24): 16347–16354.CrossRef
Metadata
Title
Prospects for Rational Control of Nanocrystal Shape Through Successive Ionic Layer Adsorption and Reaction (SILAR) and Related Approaches
Authors
Andrew B. Greytak
Rui Tan
Stephen K. Roberts
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-59662-4_7

Premium Partners