Skip to main content
Top
Published in:

25-05-2023

Prospects of graphene-based heat sink and its computational thermal analysis in avalanche transit time devices

Author: Girish Chandra Ghivela

Published in: Journal of Computational Electronics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The junction of impact ionization and avalanche transit time (IMPATT) diodes generally operates at a higher temperature than ambient temperature. Therefore, the junction experiences a considerable increase in heat, which eventually transfers to the whole diode structure. As a result, the diode may suffer from burnout more quickly, implying lower life expectancy of the IMPATT diode. Thus, this diode must be modeled and analyzed thermally in order to reduce the risk of thermal failure. The performance of graphene-based heat sink is reported here for the double-drift region IMPATT structure. It was observed that graphene-based heat sink has better thermal performance as compared to that of diamond-based heat sink. In graphene-based heat sink, the reduction in thermal resistance compared to diamond varies from 12.07% at 150 K to 93.59% at 800 K.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sze, S.M., Li, Y., Ng, K.: Physics of Semiconductor devices, 3rd edn., pp. 466–488. Willey, New Jersey (2007) Sze, S.M., Li, Y., Ng, K.: Physics of Semiconductor devices, 3rd edn., pp. 466–488. Willey, New Jersey (2007)
2.
go back to reference Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon, Oxford (1959)MATH Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon, Oxford (1959)MATH
3.
go back to reference Josenhans, J.G.: Diamond as an insulating heat sink for a series combination of IMPATT diodes. Proc. IEEE 56, 762–763 (1968)CrossRef Josenhans, J.G.: Diamond as an insulating heat sink for a series combination of IMPATT diodes. Proc. IEEE 56, 762–763 (1968)CrossRef
4.
go back to reference Ghivela, G.C., Sengupta, J.: Modeling and computation of double drift region transit time diode performance based on graphene-SiC. Int. J. Numer. Model. 32, 1–11 (2019) Ghivela, G.C., Sengupta, J.: Modeling and computation of double drift region transit time diode performance based on graphene-SiC. Int. J. Numer. Model. 32, 1–11 (2019)
5.
go back to reference Datta, D.N., et al.: Computer analysis of DC field and current density profiles of DAR Impatt diode. IEEE Trans. Electron Dev. 29, 1813–1816 (1982)CrossRef Datta, D.N., et al.: Computer analysis of DC field and current density profiles of DAR Impatt diode. IEEE Trans. Electron Dev. 29, 1813–1816 (1982)CrossRef
6.
go back to reference Ghivela, G.C., Sengupta, J.: Prospects of impact avalanche transit time diode based on chemical vapor deposited diamond substrate. J. Electron. Mater. 48, 1044–1053 (2019)CrossRef Ghivela, G.C., Sengupta, J.: Prospects of impact avalanche transit time diode based on chemical vapor deposited diamond substrate. J. Electron. Mater. 48, 1044–1053 (2019)CrossRef
7.
go back to reference Acharyya, A., Banerjee, J.P.: Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014)CrossRef Acharyya, A., Banerjee, J.P.: Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014)CrossRef
8.
go back to reference Bandyopadhyay, P.K., et al.: Large-signal characterization of millimeter-wave IMPATTs: effect of reduced impact ionization rate of charge carriers due to carrier-carrier interactions. J. Comput. Electron. 15, 646–656 (2016)CrossRef Bandyopadhyay, P.K., et al.: Large-signal characterization of millimeter-wave IMPATTs: effect of reduced impact ionization rate of charge carriers due to carrier-carrier interactions. J. Comput. Electron. 15, 646–656 (2016)CrossRef
9.
go back to reference Mukherjee, M., Roy, S.K.: Wide band gap III-V nitride based avalanche transit time diode in terahertz regime: studies on the effects on punch through on high frequency characteristics and series resistance of the devices. Curr. Appl. Phys. 10, 646–651 (2010)CrossRef Mukherjee, M., Roy, S.K.: Wide band gap III-V nitride based avalanche transit time diode in terahertz regime: studies on the effects on punch through on high frequency characteristics and series resistance of the devices. Curr. Appl. Phys. 10, 646–651 (2010)CrossRef
10.
go back to reference Banerjee, S., Acharyya, A., Mitra, M.: Dependence of noise properties on photon flux incident on silicon MITATT device at millimeter wave window frequencies. Proc. Technol. 4, 431–436 (2012)CrossRef Banerjee, S., Acharyya, A., Mitra, M.: Dependence of noise properties on photon flux incident on silicon MITATT device at millimeter wave window frequencies. Proc. Technol. 4, 431–436 (2012)CrossRef
11.
go back to reference Mukherjee, M., Roy, S.K.: Optically modulated III-V nitride based top mounted and flip chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photo generated carriers. IEEE Trans. Electron. Dev. 56, 1411–1417 (2009)CrossRef Mukherjee, M., Roy, S.K.: Optically modulated III-V nitride based top mounted and flip chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photo generated carriers. IEEE Trans. Electron. Dev. 56, 1411–1417 (2009)CrossRef
12.
go back to reference Biswas, A., Sinha, S., Acharyya, A., et al.: 1.0 THz GaN IMPATT source: effect of parasitic series resistance. J. Infrared Milli Terahz Waves 39, 954–974 (2018)CrossRef Biswas, A., Sinha, S., Acharyya, A., et al.: 1.0 THz GaN IMPATT source: effect of parasitic series resistance. J. Infrared Milli Terahz Waves 39, 954–974 (2018)CrossRef
13.
go back to reference Ghivela, G.C., Sengupta, J.: Numerical study of magnetic field effect on graphene based IMPATT source. Superlattices Microstruct. 137, 1–7 (2020)CrossRef Ghivela, G.C., Sengupta, J.: Numerical study of magnetic field effect on graphene based IMPATT source. Superlattices Microstruct. 137, 1–7 (2020)CrossRef
14.
go back to reference Ghivela, G.C., Sengupta, J.: Space charge studies in graphene based avalanche transit time devices. Superlattices Microstruct. 155, 1–8 (2021)CrossRef Ghivela, G.C., Sengupta, J.: Space charge studies in graphene based avalanche transit time devices. Superlattices Microstruct. 155, 1–8 (2021)CrossRef
15.
go back to reference Gummel, H.K., Blue, J.L.: A small signal theory of avalanche noise in IMPATT diodes. IEEE Trans. Electron. Dev. 14, 569–580 (1967)CrossRef Gummel, H.K., Blue, J.L.: A small signal theory of avalanche noise in IMPATT diodes. IEEE Trans. Electron. Dev. 14, 569–580 (1967)CrossRef
16.
go back to reference Roy, S.K., Sridharan, M., Ghosh, R., Pal, B.B.: Computer method for the DC field and carrier current profiles in the field extremum in the depletion layer, in Proceedings of the 1st conference on numerical analysis of semiconductor devices (NASECODE I) 1, 266–274 (1979) Roy, S.K., Sridharan, M., Ghosh, R., Pal, B.B.: Computer method for the DC field and carrier current profiles in the field extremum in the depletion layer, in Proceedings of the 1st conference on numerical analysis of semiconductor devices (NASECODE I) 1, 266–274 (1979)
17.
go back to reference Acharyya, A., Mukherjee, M., Banerjee, J.P.: Effects of tunnelling current on mm-wave IMPATT devices. Int. J. Electron. 102, 1429–1456 (2015)CrossRef Acharyya, A., Mukherjee, M., Banerjee, J.P.: Effects of tunnelling current on mm-wave IMPATT devices. Int. J. Electron. 102, 1429–1456 (2015)CrossRef
18.
go back to reference Mishra, J.K., Panda, A.K., Dash, G.N.: An extremely low-noise heterojunction IMPATT. IEEE Trans. Electron. Dev. 44, 2143–2148 (1997)CrossRef Mishra, J.K., Panda, A.K., Dash, G.N.: An extremely low-noise heterojunction IMPATT. IEEE Trans. Electron. Dev. 44, 2143–2148 (1997)CrossRef
19.
go back to reference Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE 59, 1140–1154 (1971)CrossRef Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE 59, 1140–1154 (1971)CrossRef
20.
go back to reference Ghivela, G.C., Sengupta, J., Mitra, M.: Quantum corrected drift diffusion based noise model for impact avalanche and transit time diode. Superlattices Microstruct. 128, 402–407 (2019)CrossRef Ghivela, G.C., Sengupta, J., Mitra, M.: Quantum corrected drift diffusion based noise model for impact avalanche and transit time diode. Superlattices Microstruct. 128, 402–407 (2019)CrossRef
21.
go back to reference Ghivela, G.C., Sengupta, J.: Noise performance of avalanche transit time devices in the presence of acoustic phonons. J. Comput. Electron. 18, 222–230 (2019)CrossRef Ghivela, G.C., Sengupta, J.: Noise performance of avalanche transit time devices in the presence of acoustic phonons. J. Comput. Electron. 18, 222–230 (2019)CrossRef
22.
go back to reference Ghivela, G.C., Sengupta, J.: Estimation of power density in IMPATT using different materials. Int. J. Electron. 107, 740–754 (2019)CrossRef Ghivela, G.C., Sengupta, J.: Estimation of power density in IMPATT using different materials. Int. J. Electron. 107, 740–754 (2019)CrossRef
23.
go back to reference Swan, C.B., Misawa, T., Marinaccio, L.: Composite avalanche diode structures for increased power capability. IEEE Trans. Electron. Dev. 14, 584–589 (1967)CrossRef Swan, C.B., Misawa, T., Marinaccio, L.: Composite avalanche diode structures for increased power capability. IEEE Trans. Electron. Dev. 14, 584–589 (1967)CrossRef
24.
go back to reference Kennedy, D.P.: Spreading resistance in cylindrical semiconductor devices. J. Appl. Phys. 31, 1490–1497 (1960)CrossRef Kennedy, D.P.: Spreading resistance in cylindrical semiconductor devices. J. Appl. Phys. 31, 1490–1497 (1960)CrossRef
25.
go back to reference Dalle, C., Dessenne, F., Thobel, J.: theoretical investigation of terahertz GaN mesa transferred-electron device by means of time-domain energy/momentum modeling. IEEE Trans. Electron. Dev. 59, 3321–3326 (2012)CrossRef Dalle, C., Dessenne, F., Thobel, J.: theoretical investigation of terahertz GaN mesa transferred-electron device by means of time-domain energy/momentum modeling. IEEE Trans. Electron. Dev. 59, 3321–3326 (2012)CrossRef
26.
go back to reference Csanky, G.: Reliability critical thermal model for double-drift impatt diodes on diamond heat sink. Qual. Reliab. Eng. Int. 6, 73–84 (1990)CrossRef Csanky, G.: Reliability critical thermal model for double-drift impatt diodes on diamond heat sink. Qual. Reliab. Eng. Int. 6, 73–84 (1990)CrossRef
27.
go back to reference Gibbons, G., Misawa, T.: Temperature and current distribution in an avalanching p-n junction. Solid State Electron. 11, 1007–1014 (1968)CrossRef Gibbons, G., Misawa, T.: Temperature and current distribution in an avalanching p-n junction. Solid State Electron. 11, 1007–1014 (1968)CrossRef
28.
go back to reference Zettler, R.A., Cowley, A.M.: Batch fabrication of integral-heat-sink IMPATT diodes. Electron. Lett. 5, 693–694 (1969)CrossRef Zettler, R.A., Cowley, A.M.: Batch fabrication of integral-heat-sink IMPATT diodes. Electron. Lett. 5, 693–694 (1969)CrossRef
29.
go back to reference Jauregui, L.A., et al.: Thermal transport in graphene nanostructures: Experiments and simulations. ECS Trans. 28, 73–83 (2010)CrossRef Jauregui, L.A., et al.: Thermal transport in graphene nanostructures: Experiments and simulations. ECS Trans. 28, 73–83 (2010)CrossRef
30.
go back to reference Renteria, J.D., Nika, D.L., Balandin, A.A.: Graphene thermal properties: applications in thermal management and energy storage. Appl. Sci. 4, 525–547 (2014)CrossRef Renteria, J.D., Nika, D.L., Balandin, A.A.: Graphene thermal properties: applications in thermal management and energy storage. Appl. Sci. 4, 525–547 (2014)CrossRef
31.
go back to reference Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef
32.
go back to reference Fugallo, G.: Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14, 6109–6114 (2014)CrossRef Fugallo, G.: Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14, 6109–6114 (2014)CrossRef
33.
go back to reference Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)CrossRef Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)CrossRef
34.
go back to reference Sadeghi, M.M., Pettes, M.T., Shi, L.: Thermal transport in graphene. Solid State Commun. 152, 1321–1330 (2012)CrossRef Sadeghi, M.M., Pettes, M.T., Shi, L.: Thermal transport in graphene. Solid State Commun. 152, 1321–1330 (2012)CrossRef
35.
go back to reference Molitor, F., Guttinger, J., Stampfer, C., Droscher, S., Jacobsen, A., Ihn, T., Ensslin, K.: Electronic properties of graphene nanostructures. J. Phys. Condens. Matter. 23, 243201 (2011)CrossRef Molitor, F., Guttinger, J., Stampfer, C., Droscher, S., Jacobsen, A., Ihn, T., Ensslin, K.: Electronic properties of graphene nanostructures. J. Phys. Condens. Matter. 23, 243201 (2011)CrossRef
36.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
37.
go back to reference Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRef Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRef
38.
go back to reference Zhao, G., Li, X., Huang, M., Zhen, Z., Zhong, Y., Chen, Q., Zhao, X., et al.: The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46, 4417–4449 (2017)CrossRef Zhao, G., Li, X., Huang, M., Zhen, Z., Zhong, Y., Chen, Q., Zhao, X., et al.: The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46, 4417–4449 (2017)CrossRef
39.
go back to reference Ghivela, G.C., Sengupta, J.: The promise of graphene: a survey of microwave devices based on graphene. IEEE Microwave Mag. 21, 48–65 (2020)CrossRef Ghivela, G.C., Sengupta, J.: The promise of graphene: a survey of microwave devices based on graphene. IEEE Microwave Mag. 21, 48–65 (2020)CrossRef
40.
go back to reference Avouris, P.: Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010)CrossRef Avouris, P.: Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010)CrossRef
41.
go back to reference Neto, A.H.C., et al.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef Neto, A.H.C., et al.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
Metadata
Title
Prospects of graphene-based heat sink and its computational thermal analysis in avalanche transit time devices
Author
Girish Chandra Ghivela
Publication date
25-05-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02047-3