Skip to main content
Top

2020 | OriginalPaper | Chapter

27. Protective Systems in DC Microgrids

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aging power system causes to several grid problems such as intermittency, power quality issues, and blackouts since a few decades. Therefore, the power infrastructure requires serious troubleshooting studies in a wide manner. The distributed generation and integration of large photovoltaic (PV) plants to the existing utility have led to intensive interest on DC power grid infrastructure. The widespread use of DC based microgrids decreases significant power losses and facilitates operation and maintenance of microgrids. Besides, DC loads are easily supplied by DC microgrids that eliminate the requirement for power inverters. It is noted that elimination of DC-AC power conversion can prevent power losses of entire system between 7 and 15% that is remarkable ratio for a microgrid. In one hand, the DC microgrids provide increased interest due to their advantages such as power density and distribution efficiency comparing to AC power systems. On the other hand, short-circuit current capabilities of DC microgrids lead to significant hazards for users and properties. Moreover, it is not possible to overcome arc faults occurred in a DC microgrid by using regular circuit breakers since DC current do not draw a natural zero crossing waveform. The cost and bulky structure of DC circuit breakers is another important issue in this regard. The actual fault protection systems are based on over current detection for power electronic devices and improved circuit breakers, distributed generation source controllers, and several types of relays. This chapter deals with fault detection methods and protection devices in low voltage DC (LVDC), medium voltage DC (MVDC), and high voltage DC (HVDC) networks. Protection schemes and improved devices with circuit topologies are presented regarding to DC microgrids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.A. Hosseini, H.A. Abyaneh, S.H.H. Sadeghi, F. Razavi, A. Nasiri, An overview of microgrid protection methods and the factors involved. Renew. Sustain. Energy Rev. 64, 174–186 (2016)CrossRef S.A. Hosseini, H.A. Abyaneh, S.H.H. Sadeghi, F. Razavi, A. Nasiri, An overview of microgrid protection methods and the factors involved. Renew. Sustain. Energy Rev. 64, 174–186 (2016)CrossRef
2.
go back to reference J. Shiles et al., Microgrid protection: An overview of protection strategies in North American microgrid projects (IEEE Power & Energy Society General Meeting, Chicago, IL, 2017), pp. 1–5 J. Shiles et al., Microgrid protection: An overview of protection strategies in North American microgrid projects (IEEE Power & Energy Society General Meeting, Chicago, IL, 2017), pp. 1–5
3.
go back to reference L. Che, M.E. Khodayar, M. Shahidehpour, Adaptive protection system for microgrids: Protection practices of a functional microgrid system. IEEE Electrification Mag. 2(1), 66–80 (2014)CrossRef L. Che, M.E. Khodayar, M. Shahidehpour, Adaptive protection system for microgrids: Protection practices of a functional microgrid system. IEEE Electrification Mag. 2(1), 66–80 (2014)CrossRef
4.
go back to reference K.Y. Lien et al., A novel fault protection system using communication-assisted digital relays for AC microgrids having a multiple grounding system. Int. J. Electr. Power Energy Syst. 78, 600–625 (2016)CrossRef K.Y. Lien et al., A novel fault protection system using communication-assisted digital relays for AC microgrids having a multiple grounding system. Int. J. Electr. Power Energy Syst. 78, 600–625 (2016)CrossRef
5.
go back to reference A. Hooshyar. R. Iravani, Microgrid protection. Proc. IEEE 105(7), 1332–1353 (2017)CrossRef A. Hooshyar. R. Iravani, Microgrid protection. Proc. IEEE 105(7), 1332–1353 (2017)CrossRef
6.
go back to reference H.M. Sharaf, H.H. Zeineldin, E. El Saadany, Protection coordination for microgrids with grid-connected and islanded capabilities using communication assisted dual setting directional overcurrent relays. IEEE Trans. Smart Grid 9(1), 143–151 (2018)CrossRef H.M. Sharaf, H.H. Zeineldin, E. El Saadany, Protection coordination for microgrids with grid-connected and islanded capabilities using communication assisted dual setting directional overcurrent relays. IEEE Trans. Smart Grid 9(1), 143–151 (2018)CrossRef
7.
go back to reference G. Buigues, A. Dysko, V. Valverde, I. Zamora, E. Fernandez, Microgrid protection: Technical challenges and existing techniques. Renew. Energy Power Qual. J. 222–227 (2013) G. Buigues, A. Dysko, V. Valverde, I. Zamora, E. Fernandez, Microgrid protection: Technical challenges and existing techniques. Renew. Energy Power Qual. J. 222–227 (2013)
8.
go back to reference O. Nunez Mata, R. Palma Behnke, F. Valencia, P. Mendoza Araya, G. Jimenez Estevez, Adaptive protection system for microgrids based on a robust optimization strategy. Energies 11(2), 308 (2018(CrossRef O. Nunez Mata, R. Palma Behnke, F. Valencia, P. Mendoza Araya, G. Jimenez Estevez, Adaptive protection system for microgrids based on a robust optimization strategy. Energies 11(2), 308 (2018(CrossRef
9.
go back to reference S. Dhar, R.K. Patnaik, P.K. Dash, Fault detection and location of photovoltaic based DC microgrid using differential protection strategy. IEEE Trans. Smart Grid 9(5(, 4303–4312 (2018(CrossRef S. Dhar, R.K. Patnaik, P.K. Dash, Fault detection and location of photovoltaic based DC microgrid using differential protection strategy. IEEE Trans. Smart Grid 9(5(, 4303–4312 (2018(CrossRef
10.
go back to reference K.J. Lee, G.S. Seo, B.H. Cho, DC arc fault Detection method for DC microgrid using branch monitoring. in 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, South Korea (2015), pp. 2079–2084 K.J. Lee, G.S. Seo, B.H. Cho, DC arc fault Detection method for DC microgrid using branch monitoring. in 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, South Korea (2015), pp. 2079–2084
11.
go back to reference C. Aguilera, E. Orduna, G. Ratta, Adaptive Noncommunication Protection Based on Traveling Waves and Impedance Relay. IEEE Trans. Power Deliv. 21(3), 1154–1162 (2006)CrossRef C. Aguilera, E. Orduna, G. Ratta, Adaptive Noncommunication Protection Based on Traveling Waves and Impedance Relay. IEEE Trans. Power Deliv. 21(3), 1154–1162 (2006)CrossRef
12.
go back to reference J.D. Park, J. Candelaria, L. Ma, K. Dunn, DC Ring-bus microgrid fault protection and identification of fault location. IEEE Trans. Power Deliv. 28(4), 2574–2584 (2013)CrossRef J.D. Park, J. Candelaria, L. Ma, K. Dunn, DC Ring-bus microgrid fault protection and identification of fault location. IEEE Trans. Power Deliv. 28(4), 2574–2584 (2013)CrossRef
13.
go back to reference A. Virdag, T. Hager, R.W. De Doncker, Estimation of short-circuit currents in future LVDC microgrids. CIRED—Open Access Proc. J. 1, 1098–1101 (2017)CrossRef A. Virdag, T. Hager, R.W. De Doncker, Estimation of short-circuit currents in future LVDC microgrids. CIRED—Open Access Proc. J. 1, 1098–1101 (2017)CrossRef
14.
go back to reference M. Yu, Y. Wang, L. Zhang, Z. Zhang, DC short circuit fault analysis and protection of ring type DC microgrid. in IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China (2016), pp. 1694–1700 M. Yu, Y. Wang, L. Zhang, Z. Zhang, DC short circuit fault analysis and protection of ring type DC microgrid. in IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China (2016), pp. 1694–1700
15.
go back to reference H. Kakigano, Y. Miura, T. Ise, Low-voltage bipolar-type DC microgrid for super high quality distribution. IEEE Trans. Power Electron. 25(12), 3066–3075 (2010)CrossRef H. Kakigano, Y. Miura, T. Ise, Low-voltage bipolar-type DC microgrid for super high quality distribution. IEEE Trans. Power Electron. 25(12), 3066–3075 (2010)CrossRef
16.
go back to reference T. Dragicevic, X. Lu, J.C. Vasquez, J.M. Guerrero, D.C. Microgrids-Part II, A Review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 31(5), 3528–3549 (2016)CrossRef T. Dragicevic, X. Lu, J.C. Vasquez, J.M. Guerrero, D.C. Microgrids-Part II, A Review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 31(5), 3528–3549 (2016)CrossRef
17.
go back to reference T. Dragicevic, J.C. Vasquez, J.M. Guerrero, D. Skrlec, Advanced LVDC electrical power architectures and microgrids: A step toward a new generation of power distribution networks. IEEE Electrification Mag. 2(1), 54–65 (2014)CrossRef T. Dragicevic, J.C. Vasquez, J.M. Guerrero, D. Skrlec, Advanced LVDC electrical power architectures and microgrids: A step toward a new generation of power distribution networks. IEEE Electrification Mag. 2(1), 54–65 (2014)CrossRef
18.
go back to reference D. Salomonsson, L. Soder, A. Sannino, Protection of low-voltage DC microgrids. IEEE Trans. Power Deliv. 24(3), 1045–1053 (2009)CrossRef D. Salomonsson, L. Soder, A. Sannino, Protection of low-voltage DC microgrids. IEEE Trans. Power Deliv. 24(3), 1045–1053 (2009)CrossRef
19.
go back to reference S. Castellan, R. Menis, A. Tessarolo, F. Luise, T. Mazzuca, A review of power electronics equipment for all-electric ship MVDC power systems. Int. J. Electr. Power Energy Syst. 96, 306–323 (2018)CrossRef S. Castellan, R. Menis, A. Tessarolo, F. Luise, T. Mazzuca, A review of power electronics equipment for all-electric ship MVDC power systems. Int. J. Electr. Power Energy Syst. 96, 306–323 (2018)CrossRef
20.
go back to reference M. Monadi, M.A. Zamani, C. Koch-Ciobotaru, J.I. Candela, P. Rodriguez, A communication-assisted protection scheme for direct-current distribution networks. Energy 109, 578–591 (2016)CrossRef M. Monadi, M.A. Zamani, C. Koch-Ciobotaru, J.I. Candela, P. Rodriguez, A communication-assisted protection scheme for direct-current distribution networks. Energy 109, 578–591 (2016)CrossRef
21.
go back to reference M. Farhadi, O.A. Mohammed, Protection of multi-terminal and distributed DC systems: Design challenges and techniques. Electr. Power Syst. Res. 143, 715–727 (2017)CrossRef M. Farhadi, O.A. Mohammed, Protection of multi-terminal and distributed DC systems: Design challenges and techniques. Electr. Power Syst. Res. 143, 715–727 (2017)CrossRef
22.
go back to reference A.E.B. Abu Elanien, A.A. Elserougi, A.S. Abdel Khalik, A.M. Massoud, S. Ahmed, A differential protection technique for multi-terminal HVDC. Electr. Power Syst. Res. 130, 78–88 (2016)CrossRef A.E.B. Abu Elanien, A.A. Elserougi, A.S. Abdel Khalik, A.M. Massoud, S. Ahmed, A differential protection technique for multi-terminal HVDC. Electr. Power Syst. Res. 130, 78–88 (2016)CrossRef
23.
go back to reference Q. Yang, S. Le Blond, R. Aggarwal, Y. Wang, J. Li, New ANN method for multi-terminal HVDC protection relaying. Electr. Power Syst. Res. 148, 192–201 (2017)CrossRef Q. Yang, S. Le Blond, R. Aggarwal, Y. Wang, J. Li, New ANN method for multi-terminal HVDC protection relaying. Electr. Power Syst. Res. 148, 192–201 (2017)CrossRef
24.
go back to reference J.D. Paez, D. Frey, J. Maneiro, S. Bacha, P. Dworakowski, Overview of DC-DC Converters dedicated to HVDC Grids. IEEE Trans. Power Deliv. 119–128 (2018)CrossRef J.D. Paez, D. Frey, J. Maneiro, S. Bacha, P. Dworakowski, Overview of DC-DC Converters dedicated to HVDC Grids. IEEE Trans. Power Deliv. 119–128 (2018)CrossRef
Metadata
Title
Protective Systems in DC Microgrids
Author
Ersan Kabalci
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-23723-3_27