Skip to main content
Top

2019 | OriginalPaper | Chapter

24. Proton Conductions

Authors : N. Awang, Juhana Jaafar, A. F. Ismail, T. Matsuura, M. H. D. Othman, M. A. Rahman

Published in: Functional Polymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The importance of proton conductivity is enormous for biological systems and in devices such as electrochemical sensors, electrochemical reactors, electrochromic devices, and fuel cells. In the book chapter, the phenomenon of proton conductivity in materials was discussed with a special emphasis on five different types of conductive materials, namely, perfluorinated ionomers, partially fluorinated, aromatic polymers, acid-base complexes, non-fluorinated ionomers, and hydrocarbon. In a fuel cell, the proton exchange membranes (PEMs) have a profound influence on its performance. Many researchers have investigated the functionalization methods to solve the methanol crossover problem and to obtain low electronic conductivity, low electroosmotic drag coefficient, good mechanical properties, good chemical stability, good thermal stability, and high proton conductivity. The way forward of developing high-performance proton-conductive polymeric membrane via electrospinning for as fuel cells was also addressed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Beden, J.M. Léger, C. Lamy, Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes, in Modern Aspects of Electrochemistry, (Springer US, Boston, 1992), pp. 97–264 B. Beden, J.M. Léger, C. Lamy, Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes, in Modern Aspects of Electrochemistry, (Springer US, Boston, 1992), pp. 97–264
2.
go back to reference M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998). Springer USCrossRef M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998). Springer USCrossRef
3.
go back to reference W. Jaegermann, Surface studies of layered materials in relation to energy converting interfaces, in Photoelectrochemistry and Photovoltaics of Layered Semiconductors, (Springer Netherlands, Dordrecht, 1992), pp. 195–295CrossRef W. Jaegermann, Surface studies of layered materials in relation to energy converting interfaces, in Photoelectrochemistry and Photovoltaics of Layered Semiconductors, (Springer Netherlands, Dordrecht, 1992), pp. 195–295CrossRef
4.
go back to reference L.B. Chen, J.Y. Xie, H.C. Yu, T.H. Wang, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J. Appl. Electrochem. 39(8), 1157–1162 (2009)CrossRef L.B. Chen, J.Y. Xie, H.C. Yu, T.H. Wang, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J. Appl. Electrochem. 39(8), 1157–1162 (2009)CrossRef
5.
go back to reference M.M. Nasef, E.S.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 29(6), 499–561 (2004)CrossRef M.M. Nasef, E.S.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 29(6), 499–561 (2004)CrossRef
6.
go back to reference B. Salehi, M. Salehi, K. Nsirnia, P. Soltani, M. Adalatnaghad, N. Kalantari, S. Moghaddam, The effects of selected relaxing music on anxiety and depression during hemodialysis: A randomized crossover controlled clinical trial study. Arts Psychother. 48, 76–80 (2016)CrossRef B. Salehi, M. Salehi, K. Nsirnia, P. Soltani, M. Adalatnaghad, N. Kalantari, S. Moghaddam, The effects of selected relaxing music on anxiety and depression during hemodialysis: A randomized crossover controlled clinical trial study. Arts Psychother. 48, 76–80 (2016)CrossRef
7.
go back to reference A. Pannese, M.-A. Rappaz, D. Grandjean, Metaphor and music emotion: Ancient views and future directions. Conscious. Cogn. 44, 61–71 (2016)CrossRefPubMed A. Pannese, M.-A. Rappaz, D. Grandjean, Metaphor and music emotion: Ancient views and future directions. Conscious. Cogn. 44, 61–71 (2016)CrossRefPubMed
8.
go back to reference P. Jannasch, Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr. Opin. Colloid Interface Sci. 8(1), 96–102 (2003)CrossRef P. Jannasch, Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr. Opin. Colloid Interface Sci. 8(1), 96–102 (2003)CrossRef
9.
go back to reference R. Murali, A. Eisenberg, Ionic miscibility enhancement in poly (tetrafluoroethylene)/poly (ethyl acrylate) blends. I. Dynamic mechanical studies. J. Polym. Sci. B Polym. Phys. 26(7), 1385–1396 (1988)CrossRef R. Murali, A. Eisenberg, Ionic miscibility enhancement in poly (tetrafluoroethylene)/poly (ethyl acrylate) blends. I. Dynamic mechanical studies. J. Polym. Sci. B Polym. Phys. 26(7), 1385–1396 (1988)CrossRef
10.
go back to reference H. Park, Y. Kim, W.H. Hong, Y.S. Choi, H. Lee, Influence of morphology on the transport properties of perfluorosulfonate ionomers/polypyrrole composite membrane. Macromolecules 38(6), 2289–2295 (2005)CrossRef H. Park, Y. Kim, W.H. Hong, Y.S. Choi, H. Lee, Influence of morphology on the transport properties of perfluorosulfonate ionomers/polypyrrole composite membrane. Macromolecules 38(6), 2289–2295 (2005)CrossRef
11.
go back to reference Y.S. Park, Y. Yamazaki, Novel Nafion/Hydroxyapatite composite membrane with high crystallinity and low methanol crossover for DMFCs. Polym. Bull. 53(3), 181–192 (2005)CrossRef Y.S. Park, Y. Yamazaki, Novel Nafion/Hydroxyapatite composite membrane with high crystallinity and low methanol crossover for DMFCs. Polym. Bull. 53(3), 181–192 (2005)CrossRef
12.
go back to reference K.D. Kreuer, On the development of proton conducting materials for technological applications. Solid State Ionics 97(1), 1–15 (1997)CrossRef K.D. Kreuer, On the development of proton conducting materials for technological applications. Solid State Ionics 97(1), 1–15 (1997)CrossRef
13.
go back to reference D.E. Moilanen, D.B. Spry, M.D. Fayer, Water dynamics and proton transfer in Nafion fuel cell membranes. Langmuir 24(8), 3690–3698 (2008)CrossRefPubMed D.E. Moilanen, D.B. Spry, M.D. Fayer, Water dynamics and proton transfer in Nafion fuel cell membranes. Langmuir 24(8), 3690–3698 (2008)CrossRefPubMed
14.
go back to reference S.H. Park, J.S. Park, S.D. Yim, S.H. Park, Y.M. Lee, C.S. Kim, Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol–gel process. J. Power Sources 181(2), 259–266 (2008)CrossRef S.H. Park, J.S. Park, S.D. Yim, S.H. Park, Y.M. Lee, C.S. Kim, Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol–gel process. J. Power Sources 181(2), 259–266 (2008)CrossRef
15.
go back to reference D. Yang, J. Li, Z. Jiang, L. Lu, X. Chen, Chitosan/TiO 2 nanocomposite pervaporation membranes for ethanol dehydration. Chem. Eng. Sci. 64(13), 3130–3137 (2009)CrossRef D. Yang, J. Li, Z. Jiang, L. Lu, X. Chen, Chitosan/TiO 2 nanocomposite pervaporation membranes for ethanol dehydration. Chem. Eng. Sci. 64(13), 3130–3137 (2009)CrossRef
16.
go back to reference K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001)CrossRef K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001)CrossRef
17.
go back to reference B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications – A review. J. Membr. Sci. 259(1), 10–26 (2005)CrossRef B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications – A review. J. Membr. Sci. 259(1), 10–26 (2005)CrossRef
18.
go back to reference J.M.M. Peeters, J.P. Boom, M.H.V. Mulder, H. Strathmann, Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci. 145(2), 199–209 (1998)CrossRef J.M.M. Peeters, J.P. Boom, M.H.V. Mulder, H. Strathmann, Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci. 145(2), 199–209 (1998)CrossRef
19.
go back to reference T. Xu, Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 263(1), 1–29 (2005)CrossRef T. Xu, Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 263(1), 1–29 (2005)CrossRef
20.
go back to reference M.Y. Kariduraganavar, A.A. Kittur, S.S. Kulkarni, Ion exchange membranes: Preparation, properties, and applications, in Ion Exchange Technology I (Springer Netherlands, 2012), pp. 233–276 M.Y. Kariduraganavar, A.A. Kittur, S.S. Kulkarni, Ion exchange membranes: Preparation, properties, and applications, in Ion Exchange Technology I (Springer Netherlands, 2012), pp. 233–276
21.
go back to reference M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25(10), 1463–1502 (2000)CrossRef M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 25(10), 1463–1502 (2000)CrossRef
22.
go back to reference K.S. Lee, M.H. Jeong, J.P. Lee, Y.J. Kim, J.S. Lee, Synthesis and characterization of highly fluorinated cross-linked aromatic polyethers for polymer electrolytes. Chem. Mater. 22(19), 5500–5511 (2010)CrossRef K.S. Lee, M.H. Jeong, J.P. Lee, Y.J. Kim, J.S. Lee, Synthesis and characterization of highly fluorinated cross-linked aromatic polyethers for polymer electrolytes. Chem. Mater. 22(19), 5500–5511 (2010)CrossRef
23.
go back to reference D.S. Kim, G.P. Robertson, M.D. Guiver, Y.M. Lee, Synthesis of highly fluorinated poly (arylene ether) s copolymers for proton exchange membrane materials. Journal of membrane science, 281(1-2), 111–120 (2006)CrossRef D.S. Kim, G.P. Robertson, M.D. Guiver, Y.M. Lee, Synthesis of highly fluorinated poly (arylene ether) s copolymers for proton exchange membrane materials. Journal of membrane science, 281(1-2), 111–120 (2006)CrossRef
24.
go back to reference J. Jaafar, A.F. Ismail, T. Matsuura, Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. J. Membr. Sci. 345(1), 119–127 (2009)CrossRef J. Jaafar, A.F. Ismail, T. Matsuura, Preparation and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. J. Membr. Sci. 345(1), 119–127 (2009)CrossRef
25.
go back to reference A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)CrossRefPubMed A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)CrossRefPubMed
26.
go back to reference J. Kerres, W. Zhang, L. Jorissen, V. Gogel, Application of different types of polyaryl-blend-membranes in DMFC. J. New Mater. Electrochem. Syst. 5(2), 97–108 (2002) J. Kerres, W. Zhang, L. Jorissen, V. Gogel, Application of different types of polyaryl-blend-membranes in DMFC. J. New Mater. Electrochem. Syst. 5(2), 97–108 (2002)
27.
go back to reference J. Kerres, M. Hein, W. Zhang, S. Graf, N. Nicoloso, Development of new blend membranes for polymer electrolyte fuel cell applications. J. New Mater. Electrochem. Syst. 6(4), 223–230 (2003) J. Kerres, M. Hein, W. Zhang, S. Graf, N. Nicoloso, Development of new blend membranes for polymer electrolyte fuel cell applications. J. New Mater. Electrochem. Syst. 6(4), 223–230 (2003)
28.
go back to reference J. Kerres, W. Zhang, W. Cui, New sulfonated engineering polymer via the metalation route. 2. Sulfinated-sulfonated poly(ethersulfone) PSU Udel® and its crosslinking. J. Polym. Sci. A Polym. Chem. 36, 1441–1448 (1998)CrossRef J. Kerres, W. Zhang, W. Cui, New sulfonated engineering polymer via the metalation route. 2. Sulfinated-sulfonated poly(ethersulfone) PSU Udel® and its crosslinking. J. Polym. Sci. A Polym. Chem. 36, 1441–1448 (1998)CrossRef
29.
go back to reference J. Kerres, W. Cui, S. Reichle, New sulfonated engineering polymers via the metalation route. I. Sulfonated poly (ethersulfone) PSU Udel® via metalation-sulfination-oxidation. J. Polym. Sci. A Polym. Chem. 34(12), 2421–2438 (1996)CrossRef J. Kerres, W. Cui, S. Reichle, New sulfonated engineering polymers via the metalation route. I. Sulfonated poly (ethersulfone) PSU Udel® via metalation-sulfination-oxidation. J. Polym. Sci. A Polym. Chem. 34(12), 2421–2438 (1996)CrossRef
30.
go back to reference N.Y. Arnett, W.L. Harrison, A.S. Badami, A. Roy, O. Lane, F. Cromer, Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells. J. Power Sources 172(1), 20–29 (2007)CrossRef N.Y. Arnett, W.L. Harrison, A.S. Badami, A. Roy, O. Lane, F. Cromer, Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells. J. Power Sources 172(1), 20–29 (2007)CrossRef
31.
go back to reference C. Bi, H. Zhang, S. Xiao, Y. Zhang, Z. Mai, X. Li, Grafted porous PTFE/partially fluorinated sulfonated poly (arylene ether ketone) composite membrane for PEMFC applications. J. Membr. Sci. 376(1), 170–178 (2011)CrossRef C. Bi, H. Zhang, S. Xiao, Y. Zhang, Z. Mai, X. Li, Grafted porous PTFE/partially fluorinated sulfonated poly (arylene ether ketone) composite membrane for PEMFC applications. J. Membr. Sci. 376(1), 170–178 (2011)CrossRef
32.
go back to reference Y.S. Kim, W.L. Harrison, J.E. McGrath, B.S. Pivovar, Effect of interfacial resistance on long term performance of direct methanol fuel cells. Paper 334 (2004) Y.S. Kim, W.L. Harrison, J.E. McGrath, B.S. Pivovar, Effect of interfacial resistance on long term performance of direct methanol fuel cells. Paper 334 (2004)
33.
go back to reference J.A. Kolde, B. Bahar, M.S. Wilson, T.A. Zawodzinski, S. Gottesfeld, Advanced composite polymer electrolyte fuel cell membranes, in Proton Conducting Membrane Fuel Cells I: Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells (1995), pp. 95–123 J.A. Kolde, B. Bahar, M.S. Wilson, T.A. Zawodzinski, S. Gottesfeld, Advanced composite polymer electrolyte fuel cell membranes, in Proton Conducting Membrane Fuel Cells I: Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells (1995), pp. 95–123
34.
go back to reference H.L. Lin, T.L. Yu, W.K. Chang, C.P. Cheng, C.R. Hu, G.B. Jung, Preparation of a low proton resistance PBI/PTFE composite membrane. J. Power Sources 164(2), 481–487 (2007)CrossRef H.L. Lin, T.L. Yu, W.K. Chang, C.P. Cheng, C.R. Hu, G.B. Jung, Preparation of a low proton resistance PBI/PTFE composite membrane. J. Power Sources 164(2), 481–487 (2007)CrossRef
35.
go back to reference Z. Jie, T. Haolin, P. Mu, Fabrication and characterization of self-assembled Nafion–SiO 2–ePTFE composite membrane of PEM fuel cell. J. Membr. Sci. 312(1), 41–47 (2008)CrossRef Z. Jie, T. Haolin, P. Mu, Fabrication and characterization of self-assembled Nafion–SiO 2–ePTFE composite membrane of PEM fuel cell. J. Membr. Sci. 312(1), 41–47 (2008)CrossRef
36.
go back to reference X. Zhu, H. Zhang, Y. Zhang, Y. Liang, X. Wang, B. Yi, An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis. J. Phys. Chem. B 110(29), 14240–14248 (2006)CrossRefPubMed X. Zhu, H. Zhang, Y. Zhang, Y. Liang, X. Wang, B. Yi, An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis. J. Phys. Chem. B 110(29), 14240–14248 (2006)CrossRefPubMed
37.
go back to reference S. Hietala, M. Paronen, S. Holmberg, J. Näsman, J. Juhanoja, M. Karjalainen, …, G. Sundholm, Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly (vinylidene fluoride). J. Polym. Sci. A Polym. Chem. 37(12), 1741–1753 (1999) S. Hietala, M. Paronen, S. Holmberg, J. Näsman, J. Juhanoja, M. Karjalainen, …, G. Sundholm, Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly (vinylidene fluoride). J. Polym. Sci. A Polym. Chem. 37(12), 1741–1753 (1999)
38.
go back to reference D.I. Livingston, P.M. Kamath, R.S. Corley, Poly-α, β, β-trifluorostyrene. J. Polym. Sci. 20(96), 485–490 (1956)CrossRef D.I. Livingston, P.M. Kamath, R.S. Corley, Poly-α, β, β-trifluorostyrene. J. Polym. Sci. 20(96), 485–490 (1956)CrossRef
39.
go back to reference B. Tazi, O. Savadago, New cation exchange membranes based on Nafion, Silicotungstic acid and thiophene. J. New Mater. Electrochem. Syst., in press (cf. JMS 185, 3–27) (2001) B. Tazi, O. Savadago, New cation exchange membranes based on Nafion, Silicotungstic acid and thiophene. J. New Mater. Electrochem. Syst., in press (cf. JMS 185, 3–27) (2001)
40.
go back to reference D.C. Corrêa, F.A. Rodrigues, A survey on symbolic data-based music genre classification. Expert Syst. Appl. 60, 190–210 (2016)CrossRef D.C. Corrêa, F.A. Rodrigues, A survey on symbolic data-based music genre classification. Expert Syst. Appl. 60, 190–210 (2016)CrossRef
41.
go back to reference R.B. Hodgdon, Polyelectrolytes prepared from perfluoroalkylaryl macromolecules. J. Polym. Sci. Part A-1: Polym. Chem. 6(1), 171–191 (1968)CrossRef R.B. Hodgdon, Polyelectrolytes prepared from perfluoroalkylaryl macromolecules. J. Polym. Sci. Part A-1: Polym. Chem. 6(1), 171–191 (1968)CrossRef
42.
go back to reference N.H. Jalani, Development of nanocomposite polymer electrolyte membranes for higher temperature PEM fuel cells. Doctoral dissertation, Worcester Polytechnic Institute, 2006 N.H. Jalani, Development of nanocomposite polymer electrolyte membranes for higher temperature PEM fuel cells. Doctoral dissertation, Worcester Polytechnic Institute, 2006
43.
go back to reference J. Wei, C. Stone, A.E. Steck, U.S. Patent no. 5,422,411. (U.S. Patent and Trademark Office, Washington, DC, 1995) J. Wei, C. Stone, A.E. Steck, U.S. Patent no. 5,422,411. (U.S. Patent and Trademark Office, Washington, DC, 1995)
44.
go back to reference J.J. Fontanella, M.C. Wintersgill, J.S. Wainright, R.F. Savinell, M. Litt, High pressure electrical conductivity studies of acid doped polybenzimidazole. Electrochim. Acta 43(10), 1289–1294 (1998)CrossRef J.J. Fontanella, M.C. Wintersgill, J.S. Wainright, R.F. Savinell, M. Litt, High pressure electrical conductivity studies of acid doped polybenzimidazole. Electrochim. Acta 43(10), 1289–1294 (1998)CrossRef
45.
go back to reference Y.T. Hong, C.H. Lee, H.S. Park, K.A. Min, H.J. Kim, S.Y. Nam, Y.M. Lee, Improvement of electrochemical performances of sulfonated poly (arylene ether sulfone) via incorporation of sulfonated poly (arylene ether benzimidazole). J. Power Sources 175(2), 724–731 (2008)CrossRef Y.T. Hong, C.H. Lee, H.S. Park, K.A. Min, H.J. Kim, S.Y. Nam, Y.M. Lee, Improvement of electrochemical performances of sulfonated poly (arylene ether sulfone) via incorporation of sulfonated poly (arylene ether benzimidazole). J. Power Sources 175(2), 724–731 (2008)CrossRef
46.
go back to reference W. Sheng, G. Chunli, T. Wen-Chin, S. Yao-Chi, T. Fang –Chang, Sulfonated poly(ether sulfone) (sPES)/boron phosphate (BPO4) composite membranes for high temperature proton-exchange membrane fuel cells. Int. J. Hydrog. Energy 34, 8982–8991 (2009) W. Sheng, G. Chunli, T. Wen-Chin, S. Yao-Chi, T. Fang –Chang, Sulfonated poly(ether sulfone) (sPES)/boron phosphate (BPO4) composite membranes for high temperature proton-exchange membrane fuel cells. Int. J. Hydrog. Energy 34, 8982–8991 (2009)
47.
go back to reference P. Rani, G. Sen, S. Mishra, U. Jha, Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr. Polym. 89(1), 275–281 (2012)CrossRefPubMed P. Rani, G. Sen, S. Mishra, U. Jha, Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr. Polym. 89(1), 275–281 (2012)CrossRefPubMed
48.
go back to reference A. Frenot, I.S. Chronakis, Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8(1), 64–75 (2003)CrossRef A. Frenot, I.S. Chronakis, Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8(1), 64–75 (2003)CrossRef
49.
go back to reference A. Noshay, L.M. Robeson, Sulfonated polysulfone. J. Appl. Polym. Sci. 20(7), 1885–1903 (1976)CrossRef A. Noshay, L.M. Robeson, Sulfonated polysulfone. J. Appl. Polym. Sci. 20(7), 1885–1903 (1976)CrossRef
50.
go back to reference J.L. Kice, A.R. Puls, The reaction of hypochlorite with various oxidized derivatives of disulfides and with sulfinate ions. J. Am. Chem. Soc. 99(10), 3455–3460 (1977)CrossRef J.L. Kice, A.R. Puls, The reaction of hypochlorite with various oxidized derivatives of disulfides and with sulfinate ions. J. Am. Chem. Soc. 99(10), 3455–3460 (1977)CrossRef
51.
go back to reference G. Gebel, P. Aldebert, M. Pineri, Swelling study of perfluorosulphonated ionomer membranes. Polymer 34(2), 333–339 (1993)CrossRef G. Gebel, P. Aldebert, M. Pineri, Swelling study of perfluorosulphonated ionomer membranes. Polymer 34(2), 333–339 (1993)CrossRef
52.
go back to reference F.N. Büchi, B. Gupta, O. Haas, G.G. Scherer, Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim. Acta 40(3), 345–353 (1995)CrossRef F.N. Büchi, B. Gupta, O. Haas, G.G. Scherer, Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim. Acta 40(3), 345–353 (1995)CrossRef
53.
go back to reference T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata, Proton-conducting polymers derived from poly (ether-etherketone) and poly (4-phenoxybenzoyl-1, 4-phenylene). Solid State Ionics 106(3), 219–225 (1998)CrossRef T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata, Proton-conducting polymers derived from poly (ether-etherketone) and poly (4-phenoxybenzoyl-1, 4-phenylene). Solid State Ionics 106(3), 219–225 (1998)CrossRef
54.
go back to reference Q. Guo, P.N. Pintauro, H. Tang, S. O’Connor, Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes. J. Membr. Sci. 154(2), 175–181 (1999)CrossRef Q. Guo, P.N. Pintauro, H. Tang, S. O’Connor, Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes. J. Membr. Sci. 154(2), 175–181 (1999)CrossRef
55.
go back to reference E. Vallejo, G. Pourcelly, C. Gavach, R. Mercier, M. Pineri, Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/M z+ by electrodialysis comparison with a perfluorosulfonic membrane. J. Membr. Sci. 160(1), 127–137 (1999)CrossRef E. Vallejo, G. Pourcelly, C. Gavach, R. Mercier, M. Pineri, Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/M z+ by electrodialysis comparison with a perfluorosulfonic membrane. J. Membr. Sci. 160(1), 127–137 (1999)CrossRef
56.
go back to reference H.R. Allcock, M.A. Hofmann, C.M. Ambler, S.N. Lvov, X.Y. Zhou, E. Chalkova, J. Weston, Phenyl phosphonic acid functionalized poly [aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells. J. Membr. Sci. 201(1), 47–54 (2002)CrossRef H.R. Allcock, M.A. Hofmann, C.M. Ambler, S.N. Lvov, X.Y. Zhou, E. Chalkova, J. Weston, Phenyl phosphonic acid functionalized poly [aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells. J. Membr. Sci. 201(1), 47–54 (2002)CrossRef
57.
go back to reference H. Bashir, A. Linares, J.L. Acosta, Heterogeneous sulfonation of blend systems based on hydrogenated poly (butadiene–styrene) block copolymer. Electrical and structural characterization. Solid State Ionics 139(3), 189–196 (2001)CrossRef H. Bashir, A. Linares, J.L. Acosta, Heterogeneous sulfonation of blend systems based on hydrogenated poly (butadiene–styrene) block copolymer. Electrical and structural characterization. Solid State Ionics 139(3), 189–196 (2001)CrossRef
58.
go back to reference M.A. Hofmann, C.M. Ambler, A.E. Maher, E. Chalkova, X.Y. Zhou, S.N. Lvov, H.R. Allock, Synthesis of polyphosphazenes with sulfonimide side groups. Macromolecules 35, 6490–6493 (2002)CrossRef M.A. Hofmann, C.M. Ambler, A.E. Maher, E. Chalkova, X.Y. Zhou, S.N. Lvov, H.R. Allock, Synthesis of polyphosphazenes with sulfonimide side groups. Macromolecules 35, 6490–6493 (2002)CrossRef
59.
go back to reference D. Poppe, H. Frey, K.D. Kreuer, A. Heinzel, R. Mülhaupt, Carboxylated and sulfonated poly (arylene-co-arylene sulfone) s: thermostable polyelectrolytes for fuel cell applications. Macromolecules 35(21), 7936–7941 (2002)CrossRef D. Poppe, H. Frey, K.D. Kreuer, A. Heinzel, R. Mülhaupt, Carboxylated and sulfonated poly (arylene-co-arylene sulfone) s: thermostable polyelectrolytes for fuel cell applications. Macromolecules 35(21), 7936–7941 (2002)CrossRef
60.
go back to reference S. Haufe, U. Stimming, Proton conducting membranes based on electrolyte filled microporous matrices. J. Membr. Sci. 185(1), 95–103 (2001)CrossRef S. Haufe, U. Stimming, Proton conducting membranes based on electrolyte filled microporous matrices. J. Membr. Sci. 185(1), 95–103 (2001)CrossRef
61.
go back to reference W. Becker, G. Schmidt-Naake, Proton Exchange Membranes by Irradiation Induced Grafting of Styrene Onto FEP and ETFE: Influences of the Crosslinker N, N-Methylene-bis-acrylamide. Chemical engineering & technology, 25(4), 373–377 (2002) W. Becker, G. Schmidt-Naake, Proton Exchange Membranes by Irradiation Induced Grafting of Styrene Onto FEP and ETFE: Influences of the Crosslinker N, N-Methylene-bis-acrylamide. Chemical engineering & technology, 25(4), 373–377 (2002)
62.
go back to reference T. Xu, D. Wu, L. Wu, Poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO) – a versatile starting polymer for proton conductive membranes (PCMs). Prog. Polym. Sci. 33(9), 894–915 (2008)CrossRef T. Xu, D. Wu, L. Wu, Poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO) – a versatile starting polymer for proton conductive membranes (PCMs). Prog. Polym. Sci. 33(9), 894–915 (2008)CrossRef
63.
go back to reference V. Mehta, Analysis of design and manufacturing of proton exchange membrane fuel cells (2002) V. Mehta, Analysis of design and manufacturing of proton exchange membrane fuel cells (2002)
64.
go back to reference V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114(1), 32–53 (2003)CrossRef V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114(1), 32–53 (2003)CrossRef
65.
go back to reference H. Miyake, The design and development of Flemion membranes, in Modern chlor-alkali technology. (Springer Netherlands, 1992), pp. 59–67 H. Miyake, The design and development of Flemion membranes, in Modern chlor-alkali technology. (Springer Netherlands, 1992), pp. 59–67
66.
go back to reference B.S. Pivovar, Y. Wang, E.L. Cussler, Pervaporation membranes in direct methanol fuel cells. J. Membr. Sci. 154(2), 155–162 (1999)CrossRef B.S. Pivovar, Y. Wang, E.L. Cussler, Pervaporation membranes in direct methanol fuel cells. J. Membr. Sci. 154(2), 155–162 (1999)CrossRef
67.
go back to reference T. Higashihara, K. Matsumoto, M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50(23), 5341–5357 (2009)CrossRef T. Higashihara, K. Matsumoto, M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50(23), 5341–5357 (2009)CrossRef
68.
go back to reference H.L. Wu, C.C.M. Ma, F.Y. Liu, C.Y. Chen, S.J. Lee, C.L. Chiang, Preparation and characterization of poly (ether sulfone)/sulfonated poly (ether ether ketone) blend membranes. Eur. Polym. J. 42(7), 1688–1695 (2006)CrossRef H.L. Wu, C.C.M. Ma, F.Y. Liu, C.Y. Chen, S.J. Lee, C.L. Chiang, Preparation and characterization of poly (ether sulfone)/sulfonated poly (ether ether ketone) blend membranes. Eur. Polym. J. 42(7), 1688–1695 (2006)CrossRef
69.
go back to reference B. Smitha, G. Dhanuja, S. Sridhar, Dehydration of 1, 4-dioxane by pervaporation using modified blend membranes of chitosan and nylon 66. Carbohydr. Polym. 66(4), 463–472 (2006)CrossRef B. Smitha, G. Dhanuja, S. Sridhar, Dehydration of 1, 4-dioxane by pervaporation using modified blend membranes of chitosan and nylon 66. Carbohydr. Polym. 66(4), 463–472 (2006)CrossRef
70.
go back to reference J.K. Lee, W. Li, A. Manthiram, Poly (arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells. J. Membr. Sci. 330, 73–79 (2009)CrossRef J.K. Lee, W. Li, A. Manthiram, Poly (arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells. J. Membr. Sci. 330, 73–79 (2009)CrossRef
71.
go back to reference S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35(17), 9349–9384 (2010)CrossRef S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35(17), 9349–9384 (2010)CrossRef
72.
go back to reference R.P. Kambour, J.T. Bendler, R.C. Bopp, Phase behavior of polystyrene, poly (2, 6-dimethyl-1, 4-phenylene oxide), and their brominated derivatives. Macromolecules 16(5), 753–757 (1983)CrossRef R.P. Kambour, J.T. Bendler, R.C. Bopp, Phase behavior of polystyrene, poly (2, 6-dimethyl-1, 4-phenylene oxide), and their brominated derivatives. Macromolecules 16(5), 753–757 (1983)CrossRef
73.
go back to reference P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes. J. Membr. Sci. 229(1), 95–106 (2004)CrossRef P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes. J. Membr. Sci. 229(1), 95–106 (2004)CrossRef
74.
go back to reference M. Alexander, E.T. Thachil, A comparative study of cardanol and aromatic oil as plasticizers for carbon-black-filled natural rubber. J. Appl. Polym. Sci. 102(5), 4835–4841 (2006)CrossRef M. Alexander, E.T. Thachil, A comparative study of cardanol and aromatic oil as plasticizers for carbon-black-filled natural rubber. J. Appl. Polym. Sci. 102(5), 4835–4841 (2006)CrossRef
75.
go back to reference S. Sinha, M. Ali, S. Baboota, A. Ahuja, A. Kumar, J. Ali, Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech 11(2), 518–527 (2010)PubMedCentralCrossRefPubMed S. Sinha, M. Ali, S. Baboota, A. Ahuja, A. Kumar, J. Ali, Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech 11(2), 518–527 (2010)PubMedCentralCrossRefPubMed
76.
go back to reference S. Natarajan, J.J. Moses, Surface modification of polyester fabric using polyvinyl alcohol in alkaline medium. Indian J. Fibre Text. Res. 37, 287–291 (2012) S. Natarajan, J.J. Moses, Surface modification of polyester fabric using polyvinyl alcohol in alkaline medium. Indian J. Fibre Text. Res. 37, 287–291 (2012)
77.
go back to reference H. Pu, W.H. Meyer, G. Wegner, Proton conductivity in acid-blended poly (4-vinylimidazole). Macromol. Chem. Phys. 202(9), 1478–1482 (2001)CrossRef H. Pu, W.H. Meyer, G. Wegner, Proton conductivity in acid-blended poly (4-vinylimidazole). Macromol. Chem. Phys. 202(9), 1478–1482 (2001)CrossRef
78.
go back to reference A. Bozkurt, W.H. Meyer, Proton-conducting poly (vinylpyrrolidon)–polyphosphoric acid blends. J. Polym. Sci. B Polym. Phys. 39(17), 1987–1994 (2001)CrossRef A. Bozkurt, W.H. Meyer, Proton-conducting poly (vinylpyrrolidon)–polyphosphoric acid blends. J. Polym. Sci. B Polym. Phys. 39(17), 1987–1994 (2001)CrossRef
79.
go back to reference C. Hasiotis, V. Deimede, C. Kontoyannis, New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim. Acta 46(15), 2401–2406 (2001)CrossRef C. Hasiotis, V. Deimede, C. Kontoyannis, New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim. Acta 46(15), 2401–2406 (2001)CrossRef
80.
go back to reference C. Hasiotis, L. Qingfeng, V. Deimede, J.K. Kallitsis, C.G. Kontoyannis, N.J. Bjerrum, Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. J. Electrochem. Soc. 148(5), A513–A519 (2001)CrossRef C. Hasiotis, L. Qingfeng, V. Deimede, J.K. Kallitsis, C.G. Kontoyannis, N.J. Bjerrum, Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. J. Electrochem. Soc. 148(5), A513–A519 (2001)CrossRef
81.
go back to reference J. Kerres, A. Ullrich, F. Meier, T. Haring, Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243–249 (1999)CrossRef J. Kerres, A. Ullrich, F. Meier, T. Haring, Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243–249 (1999)CrossRef
82.
go back to reference T. Xue, J.S. Trent, K. Osseo-Asare, Characterization of nafion® membranes by transmission electron microscopy. J. Membr. Sci. 45(3), 261–271 (1989)CrossRef T. Xue, J.S. Trent, K. Osseo-Asare, Characterization of nafion® membranes by transmission electron microscopy. J. Membr. Sci. 45(3), 261–271 (1989)CrossRef
83.
go back to reference W. Priedel, M. Baldauf, U. Gebhardt, J. Kerres, A. Ullrich, New ionomer membranes and their FC applications. 2. H2 fuel cell and DMFC application, in Extended Abstracts of Third International Symposium New Materials for Electrochemical Systems, Montreal, 1999, pp. 233–234 W. Priedel, M. Baldauf, U. Gebhardt, J. Kerres, A. Ullrich, New ionomer membranes and their FC applications. 2. H2 fuel cell and DMFC application, in Extended Abstracts of Third International Symposium New Materials for Electrochemical Systems, Montreal, 1999, pp. 233–234
84.
go back to reference J. Kerres, A. Ullrich, T. Haring, M. Baldauf, U. Gebhardt, W. Preidel, Preparation, characterization, and fuel cell application of new acid-base blend membranes. J. New Mater. Electrochem. Syst. 3(3), 229–240 (2000) J. Kerres, A. Ullrich, T. Haring, M. Baldauf, U. Gebhardt, W. Preidel, Preparation, characterization, and fuel cell application of new acid-base blend membranes. J. New Mater. Electrochem. Syst. 3(3), 229–240 (2000)
85.
go back to reference D. Wu, T. Xu, L. Wu, Y. Wu, Hybrid acid–base polymer membranes prepared for application in fuel cells. J. Power Sources 186(2), 286–292 (2009)CrossRef D. Wu, T. Xu, L. Wu, Y. Wu, Hybrid acid–base polymer membranes prepared for application in fuel cells. J. Power Sources 186(2), 286–292 (2009)CrossRef
86.
go back to reference Y.F. Liang, H.Y. Pan, X.L. Zhu, Y.X. Zhang, X.G. Jian, Studies on synthesis and property of novel acid–base proton exchange membranes. Chin. Chem. Lett. 18(5), 609–612 (2007)CrossRef Y.F. Liang, H.Y. Pan, X.L. Zhu, Y.X. Zhang, X.G. Jian, Studies on synthesis and property of novel acid–base proton exchange membranes. Chin. Chem. Lett. 18(5), 609–612 (2007)CrossRef
87.
go back to reference L. Qingfeng, H.A. Hjuler, N.J. Bjerrum, Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. J. Appl. Electrochem. 31(7), 773–779 (2001)CrossRef L. Qingfeng, H.A. Hjuler, N.J. Bjerrum, Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. J. Appl. Electrochem. 31(7), 773–779 (2001)CrossRef
88.
go back to reference S.R. Samms, S. Wasmus, R.F. Savinell, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J. Electrochem. Soc. 143(4), 1225–1232 (1996)CrossRef S.R. Samms, S. Wasmus, R.F. Savinell, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J. Electrochem. Soc. 143(4), 1225–1232 (1996)CrossRef
89.
go back to reference R. Bouchet, S. Miller, M. Deulot, J.L. Sonquet, A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ionics 1(45), 69–78 (2001)CrossRef R. Bouchet, S. Miller, M. Deulot, J.L. Sonquet, A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ionics 1(45), 69–78 (2001)CrossRef
90.
go back to reference P. Steiner, R. Sandor, Polybenzimidazole prepreg: improved elevated temperature properties with autoclave processability. High Perform. Polym. (UK) 3(3), 139–150 (1991)CrossRef P. Steiner, R. Sandor, Polybenzimidazole prepreg: improved elevated temperature properties with autoclave processability. High Perform. Polym. (UK) 3(3), 139–150 (1991)CrossRef
91.
go back to reference Y. Liu, J.H. He, J.Y. Yu, H.M. Zeng, Controlling numbers and sizes of beads in electrospun nanofibers. Polymer International, 57(4), 632–636 (2008)CrossRef Y. Liu, J.H. He, J.Y. Yu, H.M. Zeng, Controlling numbers and sizes of beads in electrospun nanofibers. Polymer International, 57(4), 632–636 (2008)CrossRef
92.
go back to reference J. Won, J.S. Seo, J.H. Kim, H.S. Kim, Y.S. Kang, S.J. Kim, …, J. Jegal, Coordination compound molecular sieve membranes. Adv. Mater. 17(1), 80–84 (2005)CrossRef J. Won, J.S. Seo, J.H. Kim, H.S. Kim, Y.S. Kang, S.J. Kim, …, J. Jegal, Coordination compound molecular sieve membranes. Adv. Mater. 17(1), 80–84 (2005)CrossRef
93.
go back to reference N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J. Am. Chem. Soc. 128(5), 1762–1769 (2006)CrossRefPubMed N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J. Am. Chem. Soc. 128(5), 1762–1769 (2006)CrossRefPubMed
94.
go back to reference C. Feng, K.C. Khulbe, T. Matsuura, Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci. 115(2), 756–776 (2010)CrossRef C. Feng, K.C. Khulbe, T. Matsuura, Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci. 115(2), 756–776 (2010)CrossRef
95.
go back to reference P. Lu, B. Ding, Applications of electrospun fibers. Recent Pat. Nanotechnol. 2(3), 169–182 (2008)CrossRefPubMed P. Lu, B. Ding, Applications of electrospun fibers. Recent Pat. Nanotechnol. 2(3), 169–182 (2008)CrossRefPubMed
96.
go back to reference Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12(5), 1197–1211 (2006)CrossRefPubMed Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12(5), 1197–1211 (2006)CrossRefPubMed
97.
go back to reference I.S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process – A review. J. Mater. Process. Technol. 167(2), 283–293 (2005)CrossRef I.S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process – A review. J. Mater. Process. Technol. 167(2), 283–293 (2005)CrossRef
98.
go back to reference T.N. Cason, L. Gangadharan, Price discovery and intermediation in linked emissions trading markets: A laboratory study. Ecol. Econ. 70(7), 1424–1433 (2011)CrossRef T.N. Cason, L. Gangadharan, Price discovery and intermediation in linked emissions trading markets: A laboratory study. Ecol. Econ. 70(7), 1424–1433 (2011)CrossRef
99.
go back to reference A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi, P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 70(5), 703–718 (2010)CrossRef A. Baji, Y.W. Mai, S.C. Wong, M. Abtahi, P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 70(5), 703–718 (2010)CrossRef
100.
go back to reference G.A. Gerhardt, A.F. Oke, G. Nagy, B. Moghaddam, R.N. Adams, Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res. 290(2), 390–395 (1984)CrossRefPubMed G.A. Gerhardt, A.F. Oke, G. Nagy, B. Moghaddam, R.N. Adams, Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res. 290(2), 390–395 (1984)CrossRefPubMed
101.
go back to reference Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef
102.
go back to reference A. Zucchelli, D. Fabiani, C. Gualandi, M.L. Focarete, An innovative and versatile approach to design highly porous, patterned, nanofibrous polymeric materials. J. Mater. Sci. 44(18), 4969–4975 (2009)CrossRef A. Zucchelli, D. Fabiani, C. Gualandi, M.L. Focarete, An innovative and versatile approach to design highly porous, patterned, nanofibrous polymeric materials. J. Mater. Sci. 44(18), 4969–4975 (2009)CrossRef
103.
go back to reference B. Dong, L. Gwee, D. Salas-de La Cruz, K.I. Winey, Y.A. Elabd, Super proton conductive high-purity Nafion nanofibers. Nano Lett. 10(9), 3785–3790 (2010)CrossRefPubMed B. Dong, L. Gwee, D. Salas-de La Cruz, K.I. Winey, Y.A. Elabd, Super proton conductive high-purity Nafion nanofibers. Nano Lett. 10(9), 3785–3790 (2010)CrossRefPubMed
104.
105.
go back to reference T. Tamura, H. Kawakami, Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett. 10(4), 1324–1328 (2010)CrossRefPubMed T. Tamura, H. Kawakami, Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett. 10(4), 1324–1328 (2010)CrossRefPubMed
106.
go back to reference N. Hamid, J. Stanger, N. Tucker, N. Buunk, A. Wood, M. Staiger, Control of spatial deposition of electrospun fiber using electric field manipulation. J. Eng. Fibers Fabr. 9(1), 155–164 (2014) N. Hamid, J. Stanger, N. Tucker, N. Buunk, A. Wood, M. Staiger, Control of spatial deposition of electrospun fiber using electric field manipulation. J. Eng. Fibers Fabr. 9(1), 155–164 (2014)
107.
go back to reference C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, …, J. Zhu, Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel cell. Adv. Mater. 20(9), 1644–1648 (2008)CrossRef C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, …, J. Zhu, Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel cell. Adv. Mater. 20(9), 1644–1648 (2008)CrossRef
108.
go back to reference L. Li, J. Zhang, Y. Wang, Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell. J. Membr. Sci. 226(1), 159–167 (2003)CrossRef L. Li, J. Zhang, Y. Wang, Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell. J. Membr. Sci. 226(1), 159–167 (2003)CrossRef
109.
go back to reference J.M. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, R. Jérôme, Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application. J. Membr. Sci. 270(1), 50–56 (2006)CrossRef J.M. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, R. Jérôme, Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application. J. Membr. Sci. 270(1), 50–56 (2006)CrossRef
110.
go back to reference S.J. Zaidi, Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate. Electrochim. Acta 50(24), 4771–4777 (2005)CrossRef S.J. Zaidi, Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate. Electrochim. Acta 50(24), 4771–4777 (2005)CrossRef
111.
go back to reference H. Doğan, T.Y. Inan, M. Koral, M. Kaya, Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl. Clay Sci. 52(3), 285–294 (2011)CrossRef H. Doğan, T.Y. Inan, M. Koral, M. Kaya, Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl. Clay Sci. 52(3), 285–294 (2011)CrossRef
112.
go back to reference C. Lee, S.M. Jo, J. Choi, K.Y. Baek, Y.B. Truong, I.L. Kyratzis, Y.G. Shul, SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J. Mater. Sci. 48(10), 3665–3671 (2013)CrossRef C. Lee, S.M. Jo, J. Choi, K.Y. Baek, Y.B. Truong, I.L. Kyratzis, Y.G. Shul, SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J. Mater. Sci. 48(10), 3665–3671 (2013)CrossRef
113.
go back to reference J. Jaafar, A.F. Ismail, T. Matsuura, K. Nagai, Performance of SPEEK based polymer–nanoclay inorganic membrane for DMFC. J. Membr. Sci. 382(1), 202–211 (2011)CrossRef J. Jaafar, A.F. Ismail, T. Matsuura, K. Nagai, Performance of SPEEK based polymer–nanoclay inorganic membrane for DMFC. J. Membr. Sci. 382(1), 202–211 (2011)CrossRef
114.
go back to reference S.D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson, M.D. Guiver, Proton conducting membranes based on cross-linked sulfonated poly (ether ether ketone)(SPEEK). J. Membr. Sci. 233(1), 93–99 (2004)CrossRef S.D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G.P. Robertson, M.D. Guiver, Proton conducting membranes based on cross-linked sulfonated poly (ether ether ketone)(SPEEK). J. Membr. Sci. 233(1), 93–99 (2004)CrossRef
115.
go back to reference C. Zhao, X. Li, Z. Wang, Z. Dou, S. Zhong, H. Na, Synthesis of the block sulfonated poly (ether ether ketone)s (S-PEEKs) materials for proton exchange membrane. J. Membr. Sci. 280(1), 643–650 (2006)CrossRef C. Zhao, X. Li, Z. Wang, Z. Dou, S. Zhong, H. Na, Synthesis of the block sulfonated poly (ether ether ketone)s (S-PEEKs) materials for proton exchange membrane. J. Membr. Sci. 280(1), 643–650 (2006)CrossRef
116.
go back to reference S.D. Mikhailenko, S.M.J. Zaidi, S. Kaliaguine, Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids. J. Polym. Sci. B Polym. Phys. 38(10), 1386–1395 (2000)CrossRef S.D. Mikhailenko, S.M.J. Zaidi, S. Kaliaguine, Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids. J. Polym. Sci. B Polym. Phys. 38(10), 1386–1395 (2000)CrossRef
117.
go back to reference C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications. J. Membr. Sci. 206(1), 443–453 (2002)CrossRef C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications. J. Membr. Sci. 206(1), 443–453 (2002)CrossRef
118.
go back to reference H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, H. Na, Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance. J. Membr. Sci. 308(1), 66–74 (2008)CrossRef H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, H. Na, Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance. J. Membr. Sci. 308(1), 66–74 (2008)CrossRef
119.
go back to reference C.S. Karthikeyan, S.P. Nunes, L.A.S.A. Prado, M.L. Ponce, H. Silva, B. Ruffmann, K. Schulte, Polymer nanocomposite membranes for DMFC application. J. Membr. Sci. 254(1), 139–146 (2005)CrossRef C.S. Karthikeyan, S.P. Nunes, L.A.S.A. Prado, M.L. Ponce, H. Silva, B. Ruffmann, K. Schulte, Polymer nanocomposite membranes for DMFC application. J. Membr. Sci. 254(1), 139–146 (2005)CrossRef
120.
go back to reference H. Ohya, R. Paterson, T. Nomura, S. McFadzean, T. Suzuki, M. Kogure, Properties of new inorganic membranes prepared by metal alkoxide methods Part I: A new permselective cation exchange membrane based on Si/Ta oxides. J. Membr. Sci. 105(1–2), 103–112 (1995)CrossRef H. Ohya, R. Paterson, T. Nomura, S. McFadzean, T. Suzuki, M. Kogure, Properties of new inorganic membranes prepared by metal alkoxide methods Part I: A new permselective cation exchange membrane based on Si/Ta oxides. J. Membr. Sci. 105(1–2), 103–112 (1995)CrossRef
121.
go back to reference P.L. Antonucci, A.S. Arico, P. Cretı, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 125(1), 431–437 (1999)CrossRef P.L. Antonucci, A.S. Arico, P. Cretı, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 125(1), 431–437 (1999)CrossRef
122.
go back to reference B. Baradie, J.P. Dodelet, D. Guay, Hybrid Nafion®-inorganic membrane with potential applications for polymer electrolyte fuel cells. J. Electroanal. Chem. 489(1), 101–105 (2000)CrossRef B. Baradie, J.P. Dodelet, D. Guay, Hybrid Nafion®-inorganic membrane with potential applications for polymer electrolyte fuel cells. J. Electroanal. Chem. 489(1), 101–105 (2000)CrossRef
123.
go back to reference S. Wasmus, A. Valeriu, G.D. Mateescu, D.A. Tryk, R.F. Savinell, Characterization of H3PO4-equilibrated Nafion® 117 membranes using 1H and 31P NMR spectroscopy. Solid State Ionics 80(1–2), 87–92 (1995)CrossRef S. Wasmus, A. Valeriu, G.D. Mateescu, D.A. Tryk, R.F. Savinell, Characterization of H3PO4-equilibrated Nafion® 117 membranes using 1H and 31P NMR spectroscopy. Solid State Ionics 80(1–2), 87–92 (1995)CrossRef
124.
go back to reference L. Mex, J. Müller, Plasma-polymerised electrolyte membrane for miniaturised direct methanol fuel cells. Membr. Technol. 1999(115), 5–9 (1999)CrossRef L. Mex, J. Müller, Plasma-polymerised electrolyte membrane for miniaturised direct methanol fuel cells. Membr. Technol. 1999(115), 5–9 (1999)CrossRef
125.
go back to reference F. Finsterwalder, G. Hambitzer, Proton conductive thin films prepared by plasma polymerization. J. Membr. Sci. 185(1), 105–124 (2001)CrossRef F. Finsterwalder, G. Hambitzer, Proton conductive thin films prepared by plasma polymerization. J. Membr. Sci. 185(1), 105–124 (2001)CrossRef
126.
go back to reference B. Bahar, A.R. Hobson, J.A. Kolde, D. Zuckerbrod, U.S. Patent no. 5,547,551. (U.S. Patent and Trademark Office, Washington, DC, 1996) B. Bahar, A.R. Hobson, J.A. Kolde, D. Zuckerbrod, U.S. Patent no. 5,547,551. (U.S. Patent and Trademark Office, Washington, DC, 1996)
127.
go back to reference C. Seyb, J. Kerres, Novel partially fluorinated sulfonated poly (arylenethioether)s and poly (aryleneether)s prepared from octafluorotoluene and pentafluoropyridine, and their blends with PBI-Celazol. Eur. Polym. J. 49(2), 518–531 (2013)CrossRef C. Seyb, J. Kerres, Novel partially fluorinated sulfonated poly (arylenethioether)s and poly (aryleneether)s prepared from octafluorotoluene and pentafluoropyridine, and their blends with PBI-Celazol. Eur. Polym. J. 49(2), 518–531 (2013)CrossRef
128.
go back to reference G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P. Kamat, Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21(18), 8487–8494 (2005)CrossRefPubMed G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P. Kamat, Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21(18), 8487–8494 (2005)CrossRefPubMed
129.
go back to reference F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J. Membr. Sci. 197(1–2), 231–242 (2002)CrossRef F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J. Membr. Sci. 197(1–2), 231–242 (2002)CrossRef
130.
go back to reference B. Lafitte, L.E. Karlsson, P. Jannasch, Sulfophenylation of polysulfones for proton-conducting fuel cell membranes. Macromol. Rapid Commun. 23(15), 896–900 (2002)CrossRef B. Lafitte, L.E. Karlsson, P. Jannasch, Sulfophenylation of polysulfones for proton-conducting fuel cell membranes. Macromol. Rapid Commun. 23(15), 896–900 (2002)CrossRef
131.
go back to reference Y.Z. Meng, S.C. Tjong, A.S. Hay, S.J. Wang, Synthesis and proton conductivities of phosphonic acid containing poly-(arylene ether) s. J. Polym. Sci. A Polym. Chem. 39(19), 3218–3226 (2001)CrossRef Y.Z. Meng, S.C. Tjong, A.S. Hay, S.J. Wang, Synthesis and proton conductivities of phosphonic acid containing poly-(arylene ether) s. J. Polym. Sci. A Polym. Chem. 39(19), 3218–3226 (2001)CrossRef
132.
go back to reference L. Jörissen, V. Gogel, J. Kerres, J. Garche, New membranes for direct methanol fuel cells. J. Power Sources 105(2), 267–273 (2002)CrossRef L. Jörissen, V. Gogel, J. Kerres, J. Garche, New membranes for direct methanol fuel cells. J. Power Sources 105(2), 267–273 (2002)CrossRef
133.
go back to reference Y.A. Elabd, E. Napadensky, J.M. Sloan, D.M. Crawford, C.W. Walker, Triblock copolymer ionomer membranes: Part I. Methanol and proton transport. J. Membr. Sci. 217(1), 227–242 (2003)CrossRef Y.A. Elabd, E. Napadensky, J.M. Sloan, D.M. Crawford, C.W. Walker, Triblock copolymer ionomer membranes: Part I. Methanol and proton transport. J. Membr. Sci. 217(1), 227–242 (2003)CrossRef
134.
go back to reference A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J. Meier-Haack, … & K.V. Peinemann, Ion exchange membranes derived from sulfonated polyaramides. React. Funct. Polym. 57(2), 77–92 (2003) A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J. Meier-Haack, … & K.V. Peinemann, Ion exchange membranes derived from sulfonated polyaramides. React. Funct. Polym. 57(2), 77–92 (2003)
135.
go back to reference M.S. Kang, Y.J. Choi, I.J. Choi, T.H. Yoon, S.H. Moon, Electrochemical characterization of sulfonated poly (arylene ether sulfone)(S-PES) cation-exchange membranes. J. Membr. Sci. 216(1), 39–53 (2003)CrossRef M.S. Kang, Y.J. Choi, I.J. Choi, T.H. Yoon, S.H. Moon, Electrochemical characterization of sulfonated poly (arylene ether sulfone)(S-PES) cation-exchange membranes. J. Membr. Sci. 216(1), 39–53 (2003)CrossRef
136.
go back to reference A. Taeger, C. Vogel, D. Lehmann, W. Lenk, K. Schlenstedt, J. Meier-Haack, Sulfonated multiblock copoly (ether sulfone) s as membrane materials for fuel cell applications, in Macromolecular Symposia, vol. 210, no. 1. (WILEY-VCH Verlag, 2004), pp. 175–184 A. Taeger, C. Vogel, D. Lehmann, W. Lenk, K. Schlenstedt, J. Meier-Haack, Sulfonated multiblock copoly (ether sulfone) s as membrane materials for fuel cell applications, in Macromolecular Symposia, vol. 210, no. 1. (WILEY-VCH Verlag, 2004), pp. 175–184
137.
go back to reference G. Xiao, G. Sun, D. Yan, Synthesis and characterization of novel sulfonated poly (arylene ether ketone)s derived from 4, 4′-sulfonyldiphenol. Polym. Bull. 48(4), 309–315 (2002)CrossRef G. Xiao, G. Sun, D. Yan, Synthesis and characterization of novel sulfonated poly (arylene ether ketone)s derived from 4, 4′-sulfonyldiphenol. Polym. Bull. 48(4), 309–315 (2002)CrossRef
138.
go back to reference C. Vogel, J. Meier-Haack, A. Taeger, D. Lehmann, On the stability of selected monomeric and polymeric aryl sulfonic acids on heating in water (Part 1). Fuel Cells 4(4), 320–327 (2004)CrossRef C. Vogel, J. Meier-Haack, A. Taeger, D. Lehmann, On the stability of selected monomeric and polymeric aryl sulfonic acids on heating in water (Part 1). Fuel Cells 4(4), 320–327 (2004)CrossRef
139.
go back to reference J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K.I. Okamoto, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4, 4′-diaminodiphenyl ether-2, 2′-disulfonic acid. Macromolecules 35(24), 9022–9028 (2002)CrossRef J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K.I. Okamoto, Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4, 4′-diaminodiphenyl ether-2, 2′-disulfonic acid. Macromolecules 35(24), 9022–9028 (2002)CrossRef
140.
go back to reference C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri, Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42(2), 359–373 (2001)CrossRef C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri, Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42(2), 359–373 (2001)CrossRef
141.
go back to reference C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 42(12), 5097–5105 (2001)CrossRef C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 42(12), 5097–5105 (2001)CrossRef
142.
go back to reference S. Besse, P. Capron, O. Diat, G. Gebel, F. Jousse, D. Marsacq, …, R. Mercier, Sulfonated polyimidesfor fuel cell electrode membrane assemblies (EMA). J. New Mater. Electrochem. Syst. 5, 109–112 (2002) S. Besse, P. Capron, O. Diat, G. Gebel, F. Jousse, D. Marsacq, …, R. Mercier, Sulfonated polyimidesfor fuel cell electrode membrane assemblies (EMA). J. New Mater. Electrochem. Syst. 5, 109–112 (2002)
143.
go back to reference J.A. Asensio, S. Borrós, P. Gómez-Romero, Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J. Polym. Sci. A Polym. Chem. 40(21), 3703–3710 (2002)CrossRef J.A. Asensio, S. Borrós, P. Gómez-Romero, Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J. Polym. Sci. A Polym. Chem. 40(21), 3703–3710 (2002)CrossRef
144.
go back to reference J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ionics 147(1), 189–194 (2002)CrossRef J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ionics 147(1), 189–194 (2002)CrossRef
145.
go back to reference R. Carter, R. Wycisk, H. Yoo, P.N. Pintauro, Blended polyphosphazene/polyacrylonitrile membranes for direct methanol fuel cells. Electrochem. Solid-State Lett. 5(9), A195–A197 (2002)CrossRef R. Carter, R. Wycisk, H. Yoo, P.N. Pintauro, Blended polyphosphazene/polyacrylonitrile membranes for direct methanol fuel cells. Electrochem. Solid-State Lett. 5(9), A195–A197 (2002)CrossRef
146.
go back to reference M. Schuster, W.H. Meyer, G. Wegner, H.G. Herz, M. Ise, K.D. Kreuer, J. Maier, Proton mobility in oligomer-bound proton solvents: imidazole immobilization via flexible spacers. Solid State Ionics 145(1), 85–92 (2001)CrossRef M. Schuster, W.H. Meyer, G. Wegner, H.G. Herz, M. Ise, K.D. Kreuer, J. Maier, Proton mobility in oligomer-bound proton solvents: imidazole immobilization via flexible spacers. Solid State Ionics 145(1), 85–92 (2001)CrossRef
147.
go back to reference Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34(5), 449–477 (2009)CrossRef Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34(5), 449–477 (2009)CrossRef
148.
go back to reference V. Mama, R.A. Vargas, B.E. Mellander, New proton conducting membranes based on PVAL/H3 PO2/H2O. Electrochim. Acta 44, 4227–4232 (1999) V. Mama, R.A. Vargas, B.E. Mellander, New proton conducting membranes based on PVAL/H3 PO2/H2O. Electrochim. Acta 44, 4227–4232 (1999)
149.
go back to reference A. Bozkurt, W.H. Meyer, Proton conducting blends of poly (4-vinylimidazole) with phosphoric acid. Solid State Ionics 138(3), 259–265 (2001)CrossRef A. Bozkurt, W.H. Meyer, Proton conducting blends of poly (4-vinylimidazole) with phosphoric acid. Solid State Ionics 138(3), 259–265 (2001)CrossRef
150.
go back to reference J.C. Lassegues, J. Grondin, M. Hernandez, B. Maree, Proton conducting polymer blends and hybrid organic inorganic materials. Solid State Ionics 145(1), 37–45 (2001)CrossRef J.C. Lassegues, J. Grondin, M. Hernandez, B. Maree, Proton conducting polymer blends and hybrid organic inorganic materials. Solid State Ionics 145(1), 37–45 (2001)CrossRef
151.
go back to reference R.Q. Fu, D. Julius, L. Hong, J.Y. Lee, PPO-based acid–base polymer blend membranes for direct methanol fuel cells. J. Membr. Sci. 322(2), 331–338 (2008)CrossRef R.Q. Fu, D. Julius, L. Hong, J.Y. Lee, PPO-based acid–base polymer blend membranes for direct methanol fuel cells. J. Membr. Sci. 322(2), 331–338 (2008)CrossRef
152.
go back to reference T.Z. Fu, Z.M. Cui, S.L. Zhong, Y.H. Shi, C.J. Zhao, G. Zhang, …, W Xing, Sulfonated poly (ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells. J. Power Sources (2008) T.Z. Fu, Z.M. Cui, S.L. Zhong, Y.H. Shi, C.J. Zhao, G. Zhang, …, W Xing, Sulfonated poly (ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells. J. Power Sources (2008)
153.
go back to reference Y.Z. Fu, A. Manthiram, Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. J. Power Sources 157(1), 222–225 (2006)CrossRef Y.Z. Fu, A. Manthiram, Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells. J. Power Sources 157(1), 222–225 (2006)CrossRef
154.
go back to reference J. Peron, E. Ruiz, D.J. Jones, J. Rozière, Solution sulfonation of a novel polybenzimidazole: A proton electrolyte for fuel cell application. J. Membr. Sci. 314(1), 247–256 (2008)CrossRef J. Peron, E. Ruiz, D.J. Jones, J. Rozière, Solution sulfonation of a novel polybenzimidazole: A proton electrolyte for fuel cell application. J. Membr. Sci. 314(1), 247–256 (2008)CrossRef
155.
go back to reference J. Jaafar, A.F. Ismail, A. Mustafa, Physicochemical study of poly (ether ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application. Mater. Sci. Eng. A 460, 475–484 (2007)CrossRef J. Jaafar, A.F. Ismail, A. Mustafa, Physicochemical study of poly (ether ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application. Mater. Sci. Eng. A 460, 475–484 (2007)CrossRef
156.
go back to reference Y. Xiong, J. Fang, Q.H. Zeng, Q.L. Liu, Preparation and characterization of cross-linked quaternized poly (vinyl alcohol) membranes for anion exchange membrane fuel cells. J. Membr. Sci. 311(1), 319–325 (2008)CrossRef Y. Xiong, J. Fang, Q.H. Zeng, Q.L. Liu, Preparation and characterization of cross-linked quaternized poly (vinyl alcohol) membranes for anion exchange membrane fuel cells. J. Membr. Sci. 311(1), 319–325 (2008)CrossRef
157.
go back to reference R. Neppalli, S. Wanjale, M. Birajdar, V. Causin, The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly (vinylidene fluoride). Eur. Polym. J. 49(1), 90–99 (2013)CrossRef R. Neppalli, S. Wanjale, M. Birajdar, V. Causin, The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly (vinylidene fluoride). Eur. Polym. J. 49(1), 90–99 (2013)CrossRef
158.
go back to reference W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14), R89 (2006)CrossRefPubMed W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14), R89 (2006)CrossRefPubMed
159.
go back to reference A. Greiner, J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)CrossRef A. Greiner, J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)CrossRef
160.
go back to reference S.-H. Yun, J.-J. Woo, S.-J. Seo, L. Wu, D. Wu, T. Xu, S.-H. Moon, Sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells. J. Membr. Sci. 367(1), 296–305 (2011)CrossRef S.-H. Yun, J.-J. Woo, S.-J. Seo, L. Wu, D. Wu, T. Xu, S.-H. Moon, Sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells. J. Membr. Sci. 367(1), 296–305 (2011)CrossRef
161.
go back to reference S. Cavaliere, S. Subianto, I. Savych, D.J. Jones, J. Rozière, Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4(12), 4761–4785 (2011)CrossRef S. Cavaliere, S. Subianto, I. Savych, D.J. Jones, J. Rozière, Electrospinning: Designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4(12), 4761–4785 (2011)CrossRef
162.
go back to reference Y.L. Liu, Y. Li, J.T. Xu, Z.Q. Fan, Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly (vinylidene fluoride). ACS Appl. Mater. Interfaces 2(6), 1759–1768 (2010)CrossRefPubMed Y.L. Liu, Y. Li, J.T. Xu, Z.Q. Fan, Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly (vinylidene fluoride). ACS Appl. Mater. Interfaces 2(6), 1759–1768 (2010)CrossRefPubMed
163.
go back to reference H. Junoh, J. Jaafar, M.H.D. Othman, M.A. Rahman, Polymer based membrane electrospun fiber in fuel cell application: A short review (2014) H. Junoh, J. Jaafar, M.H.D. Othman, M.A. Rahman, Polymer based membrane electrospun fiber in fuel cell application: A short review (2014)
164.
go back to reference Z. Gaowen, Z. Zhentao, Organic/inorganic composite membranes for application in DMFC. J. Membr. Sci. 261(1–2), 107–113 (2005)CrossRef Z. Gaowen, Z. Zhentao, Organic/inorganic composite membranes for application in DMFC. J. Membr. Sci. 261(1–2), 107–113 (2005)CrossRef
165.
go back to reference X. Zhu, H. Zhang, Y. Liang, Y. Zhang, Q. Luo, C. Bi, B. Yi, Challenging reinforced composite polymer electrolyte membranes based on disulfonated poly (arylene ether sulfone)-impregnated expanded PTFE for fuel cell applications. J. Mater. Chem. 17(4), 386–397 (2007)CrossRef X. Zhu, H. Zhang, Y. Liang, Y. Zhang, Q. Luo, C. Bi, B. Yi, Challenging reinforced composite polymer electrolyte membranes based on disulfonated poly (arylene ether sulfone)-impregnated expanded PTFE for fuel cell applications. J. Mater. Chem. 17(4), 386–397 (2007)CrossRef
166.
go back to reference H. Tang, M. Pan, S.P. Jiang, X. Wang, Y. Ruan, Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. Electrochim. Acta 52(16), 5304–5311 (2007)CrossRef H. Tang, M. Pan, S.P. Jiang, X. Wang, Y. Ruan, Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. Electrochim. Acta 52(16), 5304–5311 (2007)CrossRef
167.
go back to reference N. Awang, A.F. Ismail, J. Jaafar, T. Matsuura, H. Junoh, M.H.D. Othman, M.A. Rahman, Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review. React. Funct. Polym. 86, 248–258 (2015)CrossRef N. Awang, A.F. Ismail, J. Jaafar, T. Matsuura, H. Junoh, M.H.D. Othman, M.A. Rahman, Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review. React. Funct. Polym. 86, 248–258 (2015)CrossRef
168.
go back to reference H.S. Thiam, W.R.W. Daud, S.K. Kamarudin, A.B.. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, Nafion/Pd–SiO 2 nanofiber composite membranes for direct methanol fuel cell applications. Int. J. Hydrog. Energy 38(22), 9474–9483 (2013)CrossRef H.S. Thiam, W.R.W. Daud, S.K. Kamarudin, A.B.. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, Nafion/Pd–SiO 2 nanofiber composite membranes for direct methanol fuel cell applications. Int. J. Hydrog. Energy 38(22), 9474–9483 (2013)CrossRef
169.
go back to reference W. Yuan, G. Fang, Z. Li, Y. Chen, Y. Tang, Using electrospinning-based carbon nanofiber webs for methanol crossover control in passive direct methanol fuel cells. Materials 11(1), 71 (2018)PubMedCentralCrossRef W. Yuan, G. Fang, Z. Li, Y. Chen, Y. Tang, Using electrospinning-based carbon nanofiber webs for methanol crossover control in passive direct methanol fuel cells. Materials 11(1), 71 (2018)PubMedCentralCrossRef
170.
go back to reference M. Salahuddin, M.N. Uddin, G. Hwang, R. Asmatulu, Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells for cathodic water management. Int. J. Hydrog. Energy 43(25), 11530–11538 (2018)CrossRef M. Salahuddin, M.N. Uddin, G. Hwang, R. Asmatulu, Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells for cathodic water management. Int. J. Hydrog. Energy 43(25), 11530–11538 (2018)CrossRef
171.
go back to reference N. Abdullah, S.K. Kamarudin, L.K. Shyuan, Novel anodic catalyst support for direct methanol fuel cell: characterizations and single-cell performances. Nanoscale Res. Lett. 13(1), 90 (2018) N. Abdullah, S.K. Kamarudin, L.K. Shyuan, Novel anodic catalyst support for direct methanol fuel cell: characterizations and single-cell performances. Nanoscale Res. Lett. 13(1), 90 (2018)
172.
go back to reference B. Munavalli, A. Torvi, M. Kariduraganavar, A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. Polymer 142, 293–309 (2018)CrossRef B. Munavalli, A. Torvi, M. Kariduraganavar, A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell. Polymer 142, 293–309 (2018)CrossRef
173.
go back to reference A.S. Aricó, V. Baglio, V. Antonucci, Electrocatalysis of Direct Methanol Fuel Cells (Verlag GmbH & Co., Weinheim, 2009) A.S. Aricó, V. Baglio, V. Antonucci, Electrocatalysis of Direct Methanol Fuel Cells (Verlag GmbH & Co., Weinheim, 2009)
174.
go back to reference S. Jang, Y.G. Yoon, Y.S. Lee, Y.W. Choi, One-step fabrication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells. J. Membr. Sci. 563, 896–902 (2018)CrossRef S. Jang, Y.G. Yoon, Y.S. Lee, Y.W. Choi, One-step fabrication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells. J. Membr. Sci. 563, 896–902 (2018)CrossRef
175.
go back to reference S. Chan, J. Jankovic, D. Susac, M.S. Saha, M. Tam, H. Yang, F. Ko, Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: structure and performance. J. Power Sources 392, 239–250 (2018)CrossRef S. Chan, J. Jankovic, D. Susac, M.S. Saha, M. Tam, H. Yang, F. Ko, Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: structure and performance. J. Power Sources 392, 239–250 (2018)CrossRef
176.
go back to reference N. Awang, J. Jaafar, A.F. Ismail, Thermal stability and water content study of void-free electrospun SPEEK/Cloisite membrane for direct methanol fuel cell application. Polymers 10(2), 194 (2018)PubMedCentralCrossRef N. Awang, J. Jaafar, A.F. Ismail, Thermal stability and water content study of void-free electrospun SPEEK/Cloisite membrane for direct methanol fuel cell application. Polymers 10(2), 194 (2018)PubMedCentralCrossRef
177.
go back to reference F. Helmer-Metzman, F. Osan, A. Schneller, H. Ritter, K. Ledjeff, R. Nolte, R. Thorwirth, Polymer electrolyte membrane, and process for the production thereof, US Patent 5,438,082 (1995) F. Helmer-Metzman, F. Osan, A. Schneller, H. Ritter, K. Ledjeff, R. Nolte, R. Thorwirth, Polymer electrolyte membrane, and process for the production thereof, US Patent 5,438,082 (1995)
178.
go back to reference H. Junoh, J. Jaafar, N.A.M. Nor, N. Awang, M.N.A.M. Norddin, A.F. Ismail, … & W. N. W. Salleh, J. Membr. Sci. Res. (2018) H. Junoh, J. Jaafar, N.A.M. Nor, N. Awang, M.N.A.M. Norddin, A.F. Ismail, … & W. N. W. Salleh, J. Membr. Sci. Res. (2018)
179.
go back to reference N. Awang, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N. Yusof, et al., Development of dense void-free electrospun SPEEK-Cloisite15A membrane for direct methanol fuel cell application: Optimization using response surface methodology. Int. J. Hydrog. Energy 42(42), 26496–26510 (2017)CrossRef N. Awang, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N. Yusof, et al., Development of dense void-free electrospun SPEEK-Cloisite15A membrane for direct methanol fuel cell application: Optimization using response surface methodology. Int. J. Hydrog. Energy 42(42), 26496–26510 (2017)CrossRef
180.
go back to reference J. Jaafar, Development and characterization of sulfonated poly (ether ether ketone) membrane for direct methanol fuel cell. Universiti Teknologi Malaysia. M.Sc. Thesis, 2006 J. Jaafar, Development and characterization of sulfonated poly (ether ether ketone) membrane for direct methanol fuel cell. Universiti Teknologi Malaysia. M.Sc. Thesis, 2006
181.
go back to reference N. Awang, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Effects of SPEEK/Cloisite concentration as electrospinning parameter on proton exchange membrane for direct methanol fuel cell application. Mater. Sci. Forum 890, 278 (2017). Trans Tech Publications Ltd N. Awang, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Effects of SPEEK/Cloisite concentration as electrospinning parameter on proton exchange membrane for direct methanol fuel cell application. Mater. Sci. Forum 890, 278 (2017). Trans Tech Publications Ltd
182.
go back to reference N. Awang, J. Jaafar, A.F. Ismail, T. Matsuura, M.H.D. Othman, M.A. Rahman, Electrospun nanocomposite materials for polymer electrolyte membrane methanol fuel cells, in Organic-Inorganic Composite Polymer Electrolyte Membranes, (Springer, Cham, 2017), pp. 165–191CrossRef N. Awang, J. Jaafar, A.F. Ismail, T. Matsuura, M.H.D. Othman, M.A. Rahman, Electrospun nanocomposite materials for polymer electrolyte membrane methanol fuel cells, in Organic-Inorganic Composite Polymer Electrolyte Membranes, (Springer, Cham, 2017), pp. 165–191CrossRef
183.
go back to reference M.A. Mohamed, M.A. Mutalib, Z.A.M. Hir, M.F.M. Zain, A.B. Mohamad, L.J. Minggu, et al., An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int. J. Biol. Macromol. 103, 1232–1256 (2017)CrossRefPubMed M.A. Mohamed, M.A. Mutalib, Z.A.M. Hir, M.F.M. Zain, A.B. Mohamad, L.J. Minggu, et al., An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int. J. Biol. Macromol. 103, 1232–1256 (2017)CrossRefPubMed
184.
go back to reference M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, M.A. Mutalib, A.B. Mohamad, et al., Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra. Carbohydr. Polym. 157, 1892–1902 (2017)CrossRefPubMed M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, M.A. Mutalib, A.B. Mohamad, et al., Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra. Carbohydr. Polym. 157, 1892–1902 (2017)CrossRefPubMed
185.
go back to reference J.P. Luongo, Infrared study of oxygenated groups formed in polyethylene during oxidation. J. Polym. Sci. 42(139), 139–150 (1960)CrossRef J.P. Luongo, Infrared study of oxygenated groups formed in polyethylene during oxidation. J. Polym. Sci. 42(139), 139–150 (1960)CrossRef
186.
go back to reference M.A. Abdelkareem, Y. Al Haj, M. Alajami, H. Alawadhi, N.A. Barakat, Ni-Cd carbon nanofibers as an effective catalyst for urea fuel cell. J. Environ. Chem. Eng. 6(1), 332–337 (2018)CrossRef M.A. Abdelkareem, Y. Al Haj, M. Alajami, H. Alawadhi, N.A. Barakat, Ni-Cd carbon nanofibers as an effective catalyst for urea fuel cell. J. Environ. Chem. Eng. 6(1), 332–337 (2018)CrossRef
187.
go back to reference A.R. Ashraf, J.J. Ryan, M.M. Satkowski, S.D. Smith, R.J. Spontak, Effect of systematic hydrogenation on the phase behavior and nanostructural dimensions of block copolymers. ACS Appl. Mater. Interfaces 10(4), 3186–3190 (2018)CrossRef A.R. Ashraf, J.J. Ryan, M.M. Satkowski, S.D. Smith, R.J. Spontak, Effect of systematic hydrogenation on the phase behavior and nanostructural dimensions of block copolymers. ACS Appl. Mater. Interfaces 10(4), 3186–3190 (2018)CrossRef
188.
go back to reference Li, J. Zhang, Y. Wang, sulfonated poly (ether ether ketone) mem-branes for direct methanol fuel cell, J. Membr. Sci. 226, 159 (2003)CrossRef Li, J. Zhang, Y. Wang, sulfonated poly (ether ether ketone) mem-branes for direct methanol fuel cell, J. Membr. Sci. 226, 159 (2003)CrossRef
189.
go back to reference T. Sancho, J. Lemus, M. Urbiztondo, J. Soler, M.P. Pina, Zeolites and zeotype materials as efficient barriers for methanol cross-over in DMFCs. Microporous and Mesoporous Materials, 115(1-2), 206–213 (2008)CrossRef T. Sancho, J. Lemus, M. Urbiztondo, J. Soler, M.P. Pina, Zeolites and zeotype materials as efficient barriers for methanol cross-over in DMFCs. Microporous and Mesoporous Materials, 115(1-2), 206–213 (2008)CrossRef
Metadata
Title
Proton Conductions
Authors
N. Awang
Juhana Jaafar
A. F. Ismail
T. Matsuura
M. H. D. Othman
M. A. Rahman
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-95987-0_27

Premium Partners