Skip to main content
Top

2012 | OriginalPaper | Chapter

Proton Travel in Green Fluorescent Protein

Authors : Volkhard Helms, Wei Gu

Published in: Fluorescent Proteins I

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Abstract

Green fluorescence protein (GFP) wild type and some of its mutants undergo excited state proton transfer between the chromophore and the nearby Glu222 residue. This process has been covered in detail in the chapter written by Stephen Meech. Apart from this ultrafast photochemical reaction, multiple other proton-transfer processes take place in the GFP protein matrix, and these will be covered in this chapter. For example, proton exchange between the chromophore and the nearby bulk solvent may occur via His148 that is located in hydrogen-bonding distance from the chromophore and provides direct access to the bulk solvent. Moreover, two extended proton-transfer wires including titratable residues as well as a number of buried water molecules connect the chromophore to the protein surface. Based on a recent high-resolution X-ray structure of GFP, all titratable groups of the protein could be placed in one of these two large hydrogen-bonding clusters, suggesting that a multitude of proton-transfer processes can occur in the GFP matrix at any moment in time. While it is quite likely that similar proton pathways also exist in other soluble and membrane proteins, they are much harder to study. GFP is an exciting model system for monitoring those processes as they often directly affect the chromophore photophysics. The dynamics of proton exchange inside the GFP barrel and with bulk solvent has thus been characterized by fluorescence correlation spectroscopy (FCS) of the chromophore fluorescence and by pH-jump experiments. These studies showed that the autocorrelation of the chromophore fluorescence is affected either by pH-independent processes on microsecond to millisecond time scales or by pH-dependent processes on similar time scales. The former ones are likely proton equilibria occurring within the GFP barrel, and the latter ones are likely exchange processes with the solvent. Biomolecular simulation methods are now being developed, which will soon allow accessing such time scales by computational means. Then, we will hopefully be able to connect the spectroscopic findings with dynamic atomistic simulations of proton-transfer dynamics.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Swanson JMJ, Maupin CM, Chen H, Petersen MK, Xu J, Wu Y, Voth GA (2007) Proton salvation and transport in aqueous and biomolecular systems: insight from computer simulations. J Phys Chem B 111:4300–4314. doi:10.1021/jp070104x CrossRef Swanson JMJ, Maupin CM, Chen H, Petersen MK, Xu J, Wu Y, Voth GA (2007) Proton salvation and transport in aqueous and biomolecular systems: insight from computer simulations. J Phys Chem B 111:4300–4314. doi:10.​1021/​jp070104x CrossRef
9.
go back to reference Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA 93:8362–8367CrossRef Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA 93:8362–8367CrossRef
11.
go back to reference van Thor JJ, Pierik AJ, Nugteren-Roodzant I, Xie A, Hellingwerf KJ (1998) Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy. Biochemistry 37:16915–16921. doi:10.1021/bi981170f CrossRef van Thor JJ, Pierik AJ, Nugteren-Roodzant I, Xie A, Hellingwerf KJ (1998) Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy. Biochemistry 37:16915–16921. doi:10.​1021/​bi981170f CrossRef
12.
go back to reference Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:13573–13578CrossRef Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:13573–13578CrossRef
14.
go back to reference Schwille P, Kummer S, Heikal AA, Moerner WE, Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97:151–156CrossRef Schwille P, Kummer S, Heikal AA, Moerner WE, Webb WW (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97:151–156CrossRef
15.
go back to reference Saxena AM, Udgaonkar JB, Krishnamoorthy G (2005) Protein dynamics control proton transfer from bulk solvent to protein interior: a case study with a green fluorescent protein. Prot Sci 14:1787–1799. doi:10.1110/ps.051391205 CrossRef Saxena AM, Udgaonkar JB, Krishnamoorthy G (2005) Protein dynamics control proton transfer from bulk solvent to protein interior: a case study with a green fluorescent protein. Prot Sci 14:1787–1799. doi:10.​1110/​ps.​051391205 CrossRef
17.
18.
go back to reference de Grotthuss CJT (1806) Sur la décomposition de l´eau et des corps qu´elle tient en dissolution à l´aide de l´électricité galvanique. Ann Chim Paris 58:54–73 de Grotthuss CJT (1806) Sur la décomposition de l´eau et des corps qu´elle tient en dissolution à l´aide de l´électricité galvanique. Ann Chim Paris 58:54–73
20.
go back to reference Shinobu A, Palm GJ, Schierbeek AJ, Agmon N (2010) Visualizing proton antenna in a high-resolution green fluorescent protein structure. electronic version ahead of print. J Am Chem Soc. doi:10.1021/ja1010652 Shinobu A, Palm GJ, Schierbeek AJ, Agmon N (2010) Visualizing proton antenna in a high-resolution green fluorescent protein structure. electronic version ahead of print. J Am Chem Soc. doi:10.​1021/​ja1010652
21.
23.
24.
go back to reference Garczarek F, Brown LS, Lanyi JK, Gerwert K (2005) Proton binding within a membrane protein by a protonated water cluster. Proc Natl Acad Sci USA 102:3633–3638CrossRef Garczarek F, Brown LS, Lanyi JK, Gerwert K (2005) Proton binding within a membrane protein by a protonated water cluster. Proc Natl Acad Sci USA 102:3633–3638CrossRef
25.
go back to reference Sham YY, Muegge I, Warshel A (1999) Simulating proton translocations in proteins: probing proton transfer pathways in the rhodobacter sphaeroides reaction center. Protein Struct Funct Genet 36:484–500. doi:10.1002/(SICI)1097-0134(19990901)36:4<484::AID-PROT13>3.0.CO;2-RCrossRef Sham YY, Muegge I, Warshel A (1999) Simulating proton translocations in proteins: probing proton transfer pathways in the rhodobacter sphaeroides reaction center. Protein Struct Funct Genet 36:484–500. doi:10.1002/(SICI)1097-0134(19990901)36:4<484::AID-PROT13>3.0.CO;2-RCrossRef
26.
go back to reference Taraphder S, Hummer G (2003) Protein side-chain motion and hydration in proton-transfer pathways. Results for cytochrome P450cam. J Am Chem Soc 125:3931–3940. doi:10.1021/ja016860c CrossRef Taraphder S, Hummer G (2003) Protein side-chain motion and hydration in proton-transfer pathways. Results for cytochrome P450cam. J Am Chem Soc 125:3931–3940. doi:10.​1021/​ja016860c CrossRef
27.
go back to reference Kunz K, Helms V (2007) QVADIS: a package to compute proton transfer pathways in proteins. In: Falter C, Schliep A, Selbig J, Vingron M, Walther D (eds) GI-Edition – Lecture notes in informatics (LNI) – Proceedings 115 Kunz K, Helms V (2007) QVADIS: a package to compute proton transfer pathways in proteins. In: Falter C, Schliep A, Selbig J, Vingron M, Walther D (eds) GI-Edition – Lecture notes in informatics (LNI) – Proceedings 115
28.
31.
go back to reference Nifosi R, Tozzini V (2003) Molecular dynamics simulations of enhanced green fluorescent proteins: effects of F64L, S65T and T203Y mutations on the ground-state proton equlibria. Proteins 51:378–389. doi:10.1002/prot.10335 CrossRef Nifosi R, Tozzini V (2003) Molecular dynamics simulations of enhanced green fluorescent proteins: effects of F64L, S65T and T203Y mutations on the ground-state proton equlibria. Proteins 51:378–389. doi:10.​1002/​prot.​10335 CrossRef
32.
go back to reference Vallverdu G, Demachy I, Mérola F, Pasquier H, Ridard J, Lévy B (2010) Relation between pH, structure, and absorption spectrum of Cerulean: a study by molecular dynamics and TD DFT calculations. Proteins 78:1040–1054. doi:10.1002/prot.22628 CrossRef Vallverdu G, Demachy I, Mérola F, Pasquier H, Ridard J, Lévy B (2010) Relation between pH, structure, and absorption spectrum of Cerulean: a study by molecular dynamics and TD DFT calculations. Proteins 78:1040–1054. doi:10.​1002/​prot.​22628 CrossRef
34.
go back to reference Gu W, Helms V (2009) Tightly connected water wires facilitate fast proton uptake at the proton entrance of proton pumping proteins. J Am Chem Soc 131:2080–2081. doi:10.1021/ja809301w CrossRef Gu W, Helms V (2009) Tightly connected water wires facilitate fast proton uptake at the proton entrance of proton pumping proteins. J Am Chem Soc 131:2080–2081. doi:10.​1021/​ja809301w CrossRef
35.
go back to reference Schäfer LV, Groenhof G, Klingen AR, Ullmann GM, Boggia-Pasqua M, Robb MA, Grubmüller H (2007) Photoswitching of the fluorescent protein asFP595: mechanism, proton pathways, and absorption spectra. Angew Chem Int Ed 46:530–536. doi:10.1002/anie.200602315 CrossRef Schäfer LV, Groenhof G, Klingen AR, Ullmann GM, Boggia-Pasqua M, Robb MA, Grubmüller H (2007) Photoswitching of the fluorescent protein asFP595: mechanism, proton pathways, and absorption spectra. Angew Chem Int Ed 46:530–536. doi:10.​1002/​anie.​200602315 CrossRef
Metadata
Title
Proton Travel in Green Fluorescent Protein
Authors
Volkhard Helms
Wei Gu
Copyright Year
2012
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/4243_2011_13

Premium Partners