Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Prussian Blue and Other Metal–Organic Framework-based Nanozymes

Authors : Wei Zhang, Yang Wu, Zhuoxuan Li, Haijiao Dong, Yu Zhang, Ning Gu

Published in: Nanozymology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal–organic frameworks (MOFs) is a class of crystalline solid materials, whose well-defined pore structure makes them good candidates for the mimicking of natural enzymes. On one hand, MOFs are suitable for enzyme immobilization due to their porosity and multiplex structures. On the other hand, transition metal nodes containing MOFs themselves can play as biomimetic catalysts. Typically, Prussian blue (PB) is meaningful and influencing for developing MOF. Not strictly, PB is the first MOF structure that has been used for electrode modification owing to their good redox activity and high electrochemical stability. These characteristics also endow PB the potential to become an “artificial enzyme”. In this chapter, the use of MOFs and Prussian blue nanoparticles (PBNPs) for mimicking natural enzymes is discussed. History, structure, and properties of MOFs and PB are elaborated. The peroxidase, catalase, superoxide dismutase, and ascorbic acid oxidase-like activities of PBNPs are summarized. The catalytic mechanisms are also discussed. Selected examples for in vitro biodetection, in vivo bioimaging, and therapeutics are covered to highlight the broad applications of MOFs and PBNPs based on their multienzyme-like activities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Batten SR, Champness NR, Chen XM, Garciamartinez J, Kitagawa S, Öhrström L, O’Keeffe M, Paik Suh M, Reedijk J (2013) Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem 85(8):1715–1724 Batten SR, Champness NR, Chen XM, Garciamartinez J, Kitagawa S, Öhrström L, O’Keeffe M, Paik Suh M, Reedijk J (2013) Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem 85(8):1715–1724
2.
go back to reference Keggin JF, Miles FD (1936) Structures and formulae of the Prussian blues and related compounds. Nature 137:577–578 Keggin JF, Miles FD (1936) Structures and formulae of the Prussian blues and related compounds. Nature 137:577–578
3.
go back to reference Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Photoinduced magnetization of a cobalt–iron cyanide. Science 272(5262):704 Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Photoinduced magnetization of a cobalt–iron cyanide. Science 272(5262):704
4.
go back to reference Buser HJ, Ludi A, Petter W, Schwarzenbach D (1972) Single-crystal study of Prussian Blue: Fe4[Fe(CN)6]2, 14H2O. J Chem Soc, Chem Commun 23(23):1299–1299 Buser HJ, Ludi A, Petter W, Schwarzenbach D (1972) Single-crystal study of Prussian Blue: Fe4[Fe(CN)6]2, 14H2O. J Chem Soc, Chem Commun 23(23):1299–1299
5.
go back to reference Kitagawa S, Kitaura R, Noro SI (2010) Functional porous coordination polymers. Angew Chem Int Ed 35(29):2334–2375 Kitagawa S, Kitaura R, Noro SI (2010) Functional porous coordination polymers. Angew Chem Int Ed 35(29):2334–2375
6.
go back to reference Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378(6558):703–706 Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378(6558):703–706
7.
go back to reference Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759):276–279 Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759):276–279
8.
go back to reference Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472 Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472
9.
go back to reference Braga D (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129 Braga D (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129
10.
go back to reference Chae HK, Siberio-Pérez DY, Kim J, Go YB, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974):523–527 Chae HK, Siberio-Pérez DY, Kim J, Go YB, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974):523–527
11.
go back to reference Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042 Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042
12.
go back to reference Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103(27):10186–10191 Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103(27):10186–10191
13.
go back to reference Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327(5967):846–850 Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327(5967):846–850
14.
go back to reference Gassensmith JJ, Furukawa H, Smaldone RA, Forgan RS, Botros YY, Yaghi OM, Stoddart JF (2011) Strong and reversible binding of carbon dioxide in a green metal-organic framework. J Am Chem Soc 133(39):15312–15315 Gassensmith JJ, Furukawa H, Smaldone RA, Forgan RS, Botros YY, Yaghi OM, Stoddart JF (2011) Strong and reversible binding of carbon dioxide in a green metal-organic framework. J Am Chem Soc 133(39):15312–15315
15.
go back to reference Wu D, Gassensmith JJ, Ushakov S, Stoddart JF, Navrotsky A (2013) Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. J Am Chem Soc 135(18):6790–6793 Wu D, Gassensmith JJ, Ushakov S, Stoddart JF, Navrotsky A (2013) Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. J Am Chem Soc 135(18):6790–6793
16.
go back to reference Nasser I, Yang XL, Dubale AA, Li RF, Xie MH (2018) Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Bioresour Technol 270:377–382 Nasser I, Yang XL, Dubale AA, Li RF, Xie MH (2018) Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Bioresour Technol 270:377–382
17.
go back to reference Cui J, Feng Y, Lin T, Tan Z, Zhong C, Jia S (2017) Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization. ACS Appl Mater Interfaces 9(12):10587–10594 Cui J, Feng Y, Lin T, Tan Z, Zhong C, Jia S (2017) Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization. ACS Appl Mater Interfaces 9(12):10587–10594
18.
go back to reference Liao FS, Lo WS, Hsu YS, Wu CC, Wang SC, Shieh FK, Morabito JV, Chou LY, Wu KCW, Tsung CKF (2017) Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach. J Am Chem Soc 139(19):6530–6533 Liao FS, Lo WS, Hsu YS, Wu CC, Wang SC, Shieh FK, Morabito JV, Chou LY, Wu KCW, Tsung CKF (2017) Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach. J Am Chem Soc 139(19):6530–6533
19.
go back to reference Cai H, Shen T, Zhang J, Shan C, Jia J, Li X, Liu W, Tang Y (2017) A core-shell metal-organic-framework (MOF)-based smart nanocomposite for efficient NIR/H2O2-responsive photodynamic therapy against hypoxic tumor cells. J Mater Chem B 5(13):2390–2394 Cai H, Shen T, Zhang J, Shan C, Jia J, Li X, Liu W, Tang Y (2017) A core-shell metal-organic-framework (MOF)-based smart nanocomposite for efficient NIR/H2O2-responsive photodynamic therapy against hypoxic tumor cells. J Mater Chem B 5(13):2390–2394
20.
go back to reference Jiang W, Yang J, Wang X, Han H, Yang Y, Tang J, Li Q (2017) Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks. Bioresource Technol 247:1246–1248 Jiang W, Yang J, Wang X, Han H, Yang Y, Tang J, Li Q (2017) Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks. Bioresource Technol 247:1246–1248
21.
go back to reference Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H (2016) Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem 88(10):5489–5497 Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H (2016) Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem 88(10):5489–5497
22.
go back to reference Yin Y, Chen LG, Qi X, Guo L, Lin Z, Cai Z, Yang HH (2016) Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform. ACS Appl Mater Interfaces 8(42):29052–29061 Yin Y, Chen LG, Qi X, Guo L, Lin Z, Cai Z, Yang HH (2016) Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform. ACS Appl Mater Interfaces 8(42):29052–29061
23.
go back to reference Cheng H, Liu Y, Hu Y, Ding Y, Lin S, Cao W, Wang Q, Wu J, Muhammad F, Zhao X (2017) Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal Chem 89(21):11552–11559 Cheng H, Liu Y, Hu Y, Ding Y, Lin S, Cao W, Wang Q, Wu J, Muhammad F, Zhao X (2017) Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal Chem 89(21):11552–11559
24.
go back to reference Wu Y, Ma Y, Xu G, Wei F, Ma Y, Song Q, Wang X, Tang T, Song Y, Shi M (2017) Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sensors Actuat B-Chem 249:195–202 Wu Y, Ma Y, Xu G, Wei F, Ma Y, Song Q, Wang X, Tang T, Song Y, Shi M (2017) Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sensors Actuat B-Chem 249:195–202
25.
go back to reference Chen H, Qiu Q, Sharif S, Ying S, Ying Y, Wang Y (2018) Solution-phase synthesis of platinum nanoparticles decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzyme for biosensing applications. ACS Appl Mater Interfaces 10(28):24108–24115 Chen H, Qiu Q, Sharif S, Ying S, Ying Y, Wang Y (2018) Solution-phase synthesis of platinum nanoparticles decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzyme for biosensing applications. ACS Appl Mater Interfaces 10(28):24108–24115
26.
go back to reference Zhang Y, Wang F, Liu C, Wang Z, Kang L, Huang Y, Dong K, Ren J, Qu X (2018) Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1):651–661 Zhang Y, Wang F, Liu C, Wang Z, Kang L, Huang Y, Dong K, Ren J, Qu X (2018) Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1):651–661
27.
go back to reference Tan B, Zhao H, Wu W, Liu X, Zhang Y, Quan X (2017) Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale 9(47):18699–18710 Tan B, Zhao H, Wu W, Liu X, Zhang Y, Quan X (2017) Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale 9(47):18699–18710
28.
go back to reference Cui F, Deng Q, Sun L (2015) Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv 5(119):98215–98221 Cui F, Deng Q, Sun L (2015) Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv 5(119):98215–98221
29.
go back to reference Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X (2017) Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater 29(32):1700102 Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X (2017) Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater 29(32):1700102
30.
go back to reference Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, He J, Zhou L, Zhang C, Deng Y (2017) Surface-enhanced Raman scattering-active gold nanoparticles with enzyme mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6):5558–5566 Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, He J, Zhou L, Zhang C, Deng Y (2017) Surface-enhanced Raman scattering-active gold nanoparticles with enzyme mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11(6):5558–5566
31.
go back to reference Liu X, Qi W, Wang YF, Lin DW, Yang XJ, Su RX, He ZM (2018) Rational design of mimic multienzyme systems in hierarchically porous biomimetic metal-organic frameworks. ACS Appl Mater Interfaces 10(39):33407–33415 Liu X, Qi W, Wang YF, Lin DW, Yang XJ, Su RX, He ZM (2018) Rational design of mimic multienzyme systems in hierarchically porous biomimetic metal-organic frameworks. ACS Appl Mater Interfaces 10(39):33407–33415
32.
go back to reference Su L, Xiong Y, Yang H, Zhang P, Ye F (2015) Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J Mater Chem B 4(1):128–134 Su L, Xiong Y, Yang H, Zhang P, Ye F (2015) Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J Mater Chem B 4(1):128–134
33.
go back to reference Liu Z, Wang F, Ren J, Qu X (2019) A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 208:21–31 Liu Z, Wang F, Ren J, Qu X (2019) A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 208:21–31
34.
go back to reference Li SY, Cheng H, Xie BR, Qiu WX, Zeng JY, Li CX, Wan SS, Zhang L, Liu WL, Zhang XZ (2017) Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7):7006–7018 Li SY, Cheng H, Xie BR, Qiu WX, Zeng JY, Li CX, Wan SS, Zhang L, Liu WL, Zhang XZ (2017) Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7):7006–7018
35.
go back to reference Kan JL, Jiang Y, Xue A, Yu YH, Dong YB (2018) Surface decorated porphyrinic nanoscale metal-organic framework for photodynamic therapy. Inorg Chem 57(9):5420–5428 Kan JL, Jiang Y, Xue A, Yu YH, Dong YB (2018) Surface decorated porphyrinic nanoscale metal-organic framework for photodynamic therapy. Inorg Chem 57(9):5420–5428
36.
go back to reference Li A, Mu X, Li TR, Wen H, Li W, Li Y, Wang B (2018) Formation of porous Cu hydroxy double salts nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. Nanoscale 10:11948–11954 Li A, Mu X, Li TR, Wen H, Li W, Li Y, Wang B (2018) Formation of porous Cu hydroxy double salts nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. Nanoscale 10:11948–11954
37.
go back to reference Tan H, Ma C, Gao L, Li Q, Song Y, Xu F, Wang T, Wang L (2015) Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chemistry 20(49):16377–16383 Tan H, Ma C, Gao L, Li Q, Song Y, Xu F, Wang T, Wang L (2015) Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chemistry 20(49):16377–16383
38.
go back to reference Yang W, Hao J, Zhang Z, Zhang B (2015) Metal-organic frameworks-derived synthesis of porous FeP nanocubes: an effective peroxidase mimetic. J Colloid Interface Sci 460:55–60 Yang W, Hao J, Zhang Z, Zhang B (2015) Metal-organic frameworks-derived synthesis of porous FeP nanocubes: an effective peroxidase mimetic. J Colloid Interface Sci 460:55–60
39.
go back to reference Dong W, Zhuang Y, Li S, Zhang X, Chai H, Huang Y (2017) High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sensors Actuat B-Chem 255:2050–2057 Dong W, Zhuang Y, Li S, Zhang X, Chai H, Huang Y (2017) High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sensors Actuat B-Chem 255:2050–2057
40.
go back to reference Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, Cheng N, Li S, Smith JN, Du D (2019) Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron 142:111495 Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, Cheng N, Li S, Smith JN, Du D (2019) Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron 142:111495
41.
go back to reference Cao F, Zhang Y, Sun Y, Wang Z, Zhang L, Huang Y, Liu C, Liu Z, Ren J, Qu X (2018) Ultrasmall nanozymes isolated within porous carbonaceous frameworks for synergistic cancer therapy: enhanced oxidative damage and reduced energy supply. Chem Mater 30(21):7831–7839 Cao F, Zhang Y, Sun Y, Wang Z, Zhang L, Huang Y, Liu C, Liu Z, Ren J, Qu X (2018) Ultrasmall nanozymes isolated within porous carbonaceous frameworks for synergistic cancer therapy: enhanced oxidative damage and reduced energy supply. Chem Mater 30(21):7831–7839
42.
go back to reference Chen FF, Zhu YJ, Xiong ZC, Sun TW (2016) Hydroxyapatite nanowires@metal-organic framework core/shell nanofibers: templated synthesis, peroxidase-like activity, and derived flexible recyclable test paper. Chemistry 23(14):3328–3337 Chen FF, Zhu YJ, Xiong ZC, Sun TW (2016) Hydroxyapatite nanowires@metal-organic framework core/shell nanofibers: templated synthesis, peroxidase-like activity, and derived flexible recyclable test paper. Chemistry 23(14):3328–3337
43.
go back to reference Dong W, Liu X, Shi W, Huang Y (2015) Metal–organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Adv 5(23):17451–17457 Dong W, Liu X, Shi W, Huang Y (2015) Metal–organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Adv 5(23):17451–17457
44.
go back to reference Wang L, Yang H, He J, Zhang Y, Yu J, Song Y (2016) Cu-hemin metal-organic-frameworks/chitosan-reduced graphene oxide nanocomposites with peroxidase-like bioactivity for electrochemical sensing. Electrochim Acta 213:691–697 Wang L, Yang H, He J, Zhang Y, Yu J, Song Y (2016) Cu-hemin metal-organic-frameworks/chitosan-reduced graphene oxide nanocomposites with peroxidase-like bioactivity for electrochemical sensing. Electrochim Acta 213:691–697
45.
go back to reference Qin FX, Jia SY, Wang FF, Wu SH, Song J, Liu Y (2013) Hemin@metal–organic framework with peroxidase-like activity and its application to glucose detection. Catal Sci Technol 3(10):2761–2768 Qin FX, Jia SY, Wang FF, Wu SH, Song J, Liu Y (2013) Hemin@metal–organic framework with peroxidase-like activity and its application to glucose detection. Catal Sci Technol 3(10):2761–2768
46.
go back to reference Gao C, Zhu H, Chen J, Qiu H (2017) Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid. Chin Chem Lett 28(5):1006–1012 Gao C, Zhu H, Chen J, Qiu H (2017) Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid. Chin Chem Lett 28(5):1006–1012
47.
go back to reference Li Y, You X, Shi X (2016) Enhanced chemiluminescence determination of hydrogen peroxide in milk sample using metal–organic framework Fe–MIL–88NH2 as peroxidase mimetic. Food Anal Meth 10(3):1–8 Li Y, You X, Shi X (2016) Enhanced chemiluminescence determination of hydrogen peroxide in milk sample using metal–organic framework Fe–MIL–88NH2 as peroxidase mimetic. Food Anal Meth 10(3):1–8
48.
go back to reference Liu YL, Zhao XJ, Yang XX, Li YF (2013) A nanosized metal-organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 138(16):4526–4531 Liu YL, Zhao XJ, Yang XX, Li YF (2013) A nanosized metal-organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 138(16):4526–4531
49.
go back to reference Xu WQ, Jiao L, Yan HY, Wu Y, Chen LJ, Gu WL, Du D, Lin YH, Zhu CZ (2019) Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl Mater Interfaces 11(25):22096–22101 Xu WQ, Jiao L, Yan HY, Wu Y, Chen LJ, Gu WL, Du D, Lin YH, Zhu CZ (2019) Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl Mater Interfaces 11(25):22096–22101
50.
go back to reference Jiang Z, Liu Y, Hu X, Li Y (2014) Colorimetric determination of thiol compounds in serum based on Fe-MIL-88NH2 metal–organic framework as peroxidase mimetics. Anal Methods 6(15):5647–5651 Jiang Z, Liu Y, Hu X, Li Y (2014) Colorimetric determination of thiol compounds in serum based on Fe-MIL-88NH2 metal–organic framework as peroxidase mimetics. Anal Methods 6(15):5647–5651
51.
go back to reference Dalapati R, Sakthivel B, Ghosalya MK, Dhakshinamoorthy A, Biswas S (2017) A cerium-based metal-organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm 19(39):5915–5925 Dalapati R, Sakthivel B, Ghosalya MK, Dhakshinamoorthy A, Biswas S (2017) A cerium-based metal-organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm 19(39):5915–5925
52.
go back to reference Juan SZ, Jun Ze J, Fang LY (2015) A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system. Analyst 140(24):8201–8208 Juan SZ, Jun Ze J, Fang LY (2015) A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system. Analyst 140(24):8201–8208
53.
go back to reference Zhang GY, Zhuang YH, Shan D, Su GF, Cosnier S, Zhang X (2016) A zirconium based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal Chem 88(22):11207–11212 Zhang GY, Zhuang YH, Shan D, Su GF, Cosnier S, Zhang X (2016) A zirconium based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal Chem 88(22):11207–11212
54.
go back to reference Ortiz-Gómez I, Salinas-Castillo A, García AG, Álvarez-Bermejo JA, Orbe-Payá ID, Rodríguez-Diéguez A, Capitán-Vallvey LF (2018) Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Microchim Acta 185(1):47 Ortiz-Gómez I, Salinas-Castillo A, García AG, Álvarez-Bermejo JA, Orbe-Payá ID, Rodríguez-Diéguez A, Capitán-Vallvey LF (2018) Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Microchim Acta 185(1):47
55.
go back to reference Lunhong A, Lili L, Caihong Z, Jian F, Jing J (2013) MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chemistry 19(45):15105–15108 Lunhong A, Lili L, Caihong Z, Jian F, Jing J (2013) MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chemistry 19(45):15105–15108
56.
go back to reference Yi X, Dong W, Zhang X, Xie J, Huang Y (2016) MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose. Anal Bioanal Chem 408(30):1–8 Yi X, Dong W, Zhang X, Xie J, Huang Y (2016) MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose. Anal Bioanal Chem 408(30):1–8
57.
go back to reference Jian-Wei Z, Hao-Tian Z, Zi-Yi D, Xueqing W, Shu-Hong Y, Hai-Long J (2013) Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun 50(9):1092–1094 Jian-Wei Z, Hao-Tian Z, Zi-Yi D, Xueqing W, Shu-Hong Y, Hai-Long J (2013) Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun 50(9):1092–1094
58.
go back to reference Dong W, Yang L, Huang Y (2017) Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing. Talanta 167:359–366 Dong W, Yang L, Huang Y (2017) Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing. Talanta 167:359–366
59.
go back to reference Li T, Hu P, Li J, Huang P, Tong W, Gao C (2019) Enhanced peroxidase-like activity of Fe@ PCN-224 nanoparticles and their applications for detection of H2O2 and glucose. Colloids Surf Physicochem Eng Aspects 577:456–463 Li T, Hu P, Li J, Huang P, Tong W, Gao C (2019) Enhanced peroxidase-like activity of Fe@ PCN-224 nanoparticles and their applications for detection of H2O2 and glucose. Colloids Surf Physicochem Eng Aspects 577:456–463
60.
go back to reference Wang C, Gao J, Cao Y, Tan H (2018) Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 1004:74–81 Wang C, Gao J, Cao Y, Tan H (2018) Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 1004:74–81
61.
go back to reference Chen J, Yun S, Li H, Qin X, Hu X (2018) Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta 189:254–261 Chen J, Yun S, Li H, Qin X, Hu X (2018) Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta 189:254–261
62.
go back to reference Shu Y, Chen J, Xu Q, Hu X (2018) Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 184:136–142 Shu Y, Chen J, Xu Q, Hu X (2018) Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 184:136–142
63.
go back to reference Tan H, Li Q, Zhou Z, Ma C, Song Y, Xu F, Wang L (2015) A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal Chim Acta 856:90–95 Tan H, Li Q, Zhou Z, Ma C, Song Y, Xu F, Wang L (2015) A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal Chim Acta 856:90–95
64.
go back to reference Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635 Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635
65.
go back to reference Bagheri N, Khataee A, Habibi B, Hassanzadeh J (2018) Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–718 Bagheri N, Khataee A, Habibi B, Hassanzadeh J (2018) Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–718
66.
go back to reference Dong W, Zhuang Y, Li S, Zhang X, Chai H, Huang Y (2017) High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sensors Actuat B Chem Dong W, Zhuang Y, Li S, Zhang X, Chai H, Huang Y (2017) High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sensors Actuat B Chem
67.
go back to reference Qin L, Xiaoyu W, Yufeng L, Hui W (2018) 2D-MOF nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis. Anal Chem 90(16):9983–9989 Qin L, Xiaoyu W, Yufeng L, Hui W (2018) 2D-MOF nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis. Anal Chem 90(16):9983–9989
68.
go back to reference Cheng N, Zhu C, Wang Y, Du D, Zhu M-J, Luo Y, Xu W, Lin Y (2019) Nanozyme enhanced colorimetric immunoassay for naked-eye detection of salmonella enteritidis. J Anal Testing 3(1):99–106 Cheng N, Zhu C, Wang Y, Du D, Zhu M-J, Luo Y, Xu W, Lin Y (2019) Nanozyme enhanced colorimetric immunoassay for naked-eye detection of salmonella enteritidis. J Anal Testing 3(1):99–106
69.
go back to reference Chen WH, Vázquez-González M, Kozell A, Cecconello A, Willner I (2017) Cu2+-modified metal-organic framework nanoparticles: a peroxidase-mimicking nanoenzyme. Small 23(62):1703149 Chen WH, Vázquez-González M, Kozell A, Cecconello A, Willner I (2017) Cu2+-modified metal-organic framework nanoparticles: a peroxidase-mimicking nanoenzyme. Small 23(62):1703149
70.
go back to reference Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J (2016) Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces 9(2):1352–1360 Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J (2016) Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces 9(2):1352–1360
71.
go back to reference Zhang L, Zhang Y, Wang Z, Cao F, Sang Y, Dong K, Pu F, Ren J, Qu X (2019) Constructing metal–organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater Horiz Zhang L, Zhang Y, Wang Z, Cao F, Sang Y, Dong K, Pu F, Ren J, Qu X (2019) Constructing metal–organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater Horiz
72.
go back to reference Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821 Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821
73.
go back to reference Yang F, Hu S, Zhang Y, Cai X, Huang Y, Wang F, Wen S, Teng G, Gu N (2012) A hydrogen peroxide-responsive O2 nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv Mater 24(38):5205–5211 Yang F, Hu S, Zhang Y, Cai X, Huang Y, Wang F, Wen S, Teng G, Gu N (2012) A hydrogen peroxide-responsive O2 nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv Mater 24(38):5205–5211
74.
go back to reference Davidson D, Welo LA (1928) The nature of Prussian blue. J Phys Chem 32(8):1191–1196 Davidson D, Welo LA (1928) The nature of Prussian blue. J Phys Chem 32(8):1191–1196
75.
go back to reference Robin MB (1961) The color and electronic configurations of Prussian blue. Spectrochim Acta 17(9–10):1095–1095 Robin MB (1961) The color and electronic configurations of Prussian blue. Spectrochim Acta 17(9–10):1095–1095
76.
go back to reference DeLongchamp DM, Hammond PT (2004) High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv Funct Mater 14(3):224–232 DeLongchamp DM, Hammond PT (2004) High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv Funct Mater 14(3):224–232
77.
go back to reference Buser H, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O. Inorg Chem 16 (11):2704–2710 Buser H, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O. Inorg Chem 16 (11):2704–2710
78.
go back to reference Johansson A, Widenkvist E, Lu J, Boman M, Jansson U (2005) Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template. Nano Lett 5(8):1603–1606 Johansson A, Widenkvist E, Lu J, Boman M, Jansson U (2005) Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template. Nano Lett 5(8):1603–1606
79.
go back to reference Shokouhimehr M, Soehnlen ES, Hao JH, Griswold M, Flask C, Fan XD, Basilion JP, Basu S, Huang SPD (2010) Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T-1-weighted MRI contrast and small molecule delivery agents. J Mater Chem 20(25):5251–5259 Shokouhimehr M, Soehnlen ES, Hao JH, Griswold M, Flask C, Fan XD, Basilion JP, Basu S, Huang SPD (2010) Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T-1-weighted MRI contrast and small molecule delivery agents. J Mater Chem 20(25):5251–5259
80.
go back to reference McConnell H, Davidson N (1950) Spectrophotometric investigation of the interaction between iron(II) and iron(III) in hydrochloric acid solutions. J Am Chem Soc 72(12):5557–5560 McConnell H, Davidson N (1950) Spectrophotometric investigation of the interaction between iron(II) and iron(III) in hydrochloric acid solutions. J Am Chem Soc 72(12):5557–5560
81.
go back to reference Thompson RC (1948) Some exchange experiments involving hexacynoferrate(II) and hexacyanoferrate(III) ions. J Am Chem Soc 70(3):1045–1046 Thompson RC (1948) Some exchange experiments involving hexacynoferrate(II) and hexacyanoferrate(III) ions. J Am Chem Soc 70(3):1045–1046
82.
go back to reference Ibers JA, Davidson N (1951) On the interaction between hexacyanatoferrate(III) ions and (a) hexacyanatoferrate(II) or (b) iron(III) ions. J Am Chem Soc 73(1):476–478 Ibers JA, Davidson N (1951) On the interaction between hexacyanatoferrate(III) ions and (a) hexacyanatoferrate(II) or (b) iron(III) ions. J Am Chem Soc 73(1):476–478
83.
go back to reference Wood KC, Zacharia NS, Schmidt DJ, Wrightman SN, Andaya BJ, Hammond PT (2008) Electroactive controlled release thin films. Proc Natl Acad Sci USA 105(7):2280–2285 Wood KC, Zacharia NS, Schmidt DJ, Wrightman SN, Andaya BJ, Hammond PT (2008) Electroactive controlled release thin films. Proc Natl Acad Sci USA 105(7):2280–2285
84.
go back to reference Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electroanal Chem 125(6):886–887 Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electroanal Chem 125(6):886–887
85.
go back to reference Qiu J-D, Peng H-Z, Liang R-P, Li J, Xia X-H (2007) Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2. Langmuir 23(4):2133–2137 Qiu J-D, Peng H-Z, Liang R-P, Li J, Xia X-H (2007) Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2. Langmuir 23(4):2133–2137
86.
go back to reference Zhao G, Feng J-J, Zhang Q-L, Li S-P, Chen H-Y (2005) Synthesis and characterization of Prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2. Chem Mater 17(12):3154–3159 Zhao G, Feng J-J, Zhang Q-L, Li S-P, Chen H-Y (2005) Synthesis and characterization of Prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2. Chem Mater 17(12):3154–3159
87.
go back to reference Itaya K, Ataka T, Toshima S (1982) Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc 104(18):4767–4772 Itaya K, Ataka T, Toshima S (1982) Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc 104(18):4767–4772
88.
go back to reference Larionova J, Guari Y, Sangregorio C, Guérin C (2009) Cyano-bridged coordination polymer nanoparticles. New J Chem 33(6):1177–1190 Larionova J, Guari Y, Sangregorio C, Guérin C (2009) Cyano-bridged coordination polymer nanoparticles. New J Chem 33(6):1177–1190
89.
go back to reference Zheng X-J, Kuang Q, Xu T, Jiang Z-Y, Zhang S-H, Xie Z-X, Huang R-B, Zheng L-S (2007) Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly. J Phys Chem C 111(12):4499–4502 Zheng X-J, Kuang Q, Xu T, Jiang Z-Y, Zhang S-H, Xie Z-X, Huang R-B, Zheng L-S (2007) Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly. J Phys Chem C 111(12):4499–4502
90.
go back to reference Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8(28):3271–3287 Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8(28):3271–3287
91.
go back to reference Hu M, Jiang J-S (2010) Non-classical crystallization controlled by centrifugation. Cryst Eng Comm 12(11):3391–3393 Hu M, Jiang J-S (2010) Non-classical crystallization controlled by centrifugation. Cryst Eng Comm 12(11):3391–3393
92.
go back to reference Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 43(23):7339–7345 Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 43(23):7339–7345
93.
go back to reference Shokouhimehr M, Soehnlen ES, Khitrin A, Basu S, Huang SD (2010) Biocompatible Prussian blue nanoparticles: preparation, stability, cytotoxicity, and potential use as an MRI contrast agent. Inorg Chem Commun 13(1):58–61 Shokouhimehr M, Soehnlen ES, Khitrin A, Basu S, Huang SD (2010) Biocompatible Prussian blue nanoparticles: preparation, stability, cytotoxicity, and potential use as an MRI contrast agent. Inorg Chem Commun 13(1):58–61
94.
go back to reference Wu X, Cao M, Hu C, He X (2006) Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor. Cryst Growth Des 6(1):26–28 Wu X, Cao M, Hu C, He X (2006) Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor. Cryst Growth Des 6(1):26–28
95.
go back to reference Ding Y, Hu YL, Gu G, Xia XH (2009) Controllable synthesis and formation mechanism investigation of Prussian blue nanocrystals by using the polysaccharide hydrolysis method. J Phys Chem C 113(33):14838–14843 Ding Y, Hu YL, Gu G, Xia XH (2009) Controllable synthesis and formation mechanism investigation of Prussian blue nanocrystals by using the polysaccharide hydrolysis method. J Phys Chem C 113(33):14838–14843
96.
go back to reference Liang GD, Xu JT, Wang XS (2009) Synthesis and characterization of organometallic coordination polymer nanoshells of prussian blue using miniemulsion periphery polymerization (MEPP). J Am Chem Soc 131(15):5378–5379 Liang GD, Xu JT, Wang XS (2009) Synthesis and characterization of organometallic coordination polymer nanoshells of prussian blue using miniemulsion periphery polymerization (MEPP). J Am Chem Soc 131(15):5378–5379
97.
go back to reference McHale R, Ghasdian N, Liu YB, Ward MB, Hondow NS, Wang HH, Miao YQ, Brydson R, Wang XS (2010) Prussian blue coordination polymer nanobox synthesis using miniemulsion periphery polymerization (MEPP). Chem Commun 46(25):4574–4576 McHale R, Ghasdian N, Liu YB, Ward MB, Hondow NS, Wang HH, Miao YQ, Brydson R, Wang XS (2010) Prussian blue coordination polymer nanobox synthesis using miniemulsion periphery polymerization (MEPP). Chem Commun 46(25):4574–4576
98.
go back to reference Domínguez-Vera JM, Colacio E (2003) Nanoparticles of Prussian blue ferritin: a new route for obtaining nanomaterials. Inorg Chem 42(22):6983–6985 Domínguez-Vera JM, Colacio E (2003) Nanoparticles of Prussian blue ferritin: a new route for obtaining nanomaterials. Inorg Chem 42(22):6983–6985
99.
go back to reference Zhang X-Q, Gong S-W, Zhang Y, Yang T, Wang C-Y, Gu N (2010) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20(24):5110–5116 Zhang X-Q, Gong S-W, Zhang Y, Yang T, Wang C-Y, Gu N (2010) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20(24):5110–5116
100.
go back to reference Zhang W, Hu S, Yin J-J, He W, Lu W, Ma M, Gu N, Zhang Y (2016) Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc 138(18):5860–5865 Zhang W, Hu S, Yin J-J, He W, Lu W, Ma M, Gu N, Zhang Y (2016) Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc 138(18):5860–5865
101.
go back to reference Zhang W, Wu Y, Dong H-J, Yin J-J, Zhang H, Wu H-A, Song L-N, Chong Y, Li Z-X, Gu N, Zhang Y (2018) Sparks fly between ascorbic acid and iron-based nanozymes: a study on Prussian blue nanoparticles. Colloid Surf B 163(1):379–384 Zhang W, Wu Y, Dong H-J, Yin J-J, Zhang H, Wu H-A, Song L-N, Chong Y, Li Z-X, Gu N, Zhang Y (2018) Sparks fly between ascorbic acid and iron-based nanozymes: a study on Prussian blue nanoparticles. Colloid Surf B 163(1):379–384
102.
go back to reference Li R, Guo D, Ye J, Zhang M (2015) Stabilization of Prussian blue with polyaniline and carbon nanotubes in neutral media for in vivo determination of glucose in rat brains. Analyst 140(11):3746–3752 Li R, Guo D, Ye J, Zhang M (2015) Stabilization of Prussian blue with polyaniline and carbon nanotubes in neutral media for in vivo determination of glucose in rat brains. Analyst 140(11):3746–3752
103.
go back to reference Peng KF, Zhao HW, Wu XF (2015) Signal-enhanced electrochemical immunosensor for CD36 based on cascade catalysis of a GOx labeled Prussian blue functionalized Ceria nanohybrid. RSC Adv 5(3):1812–1817 Peng KF, Zhao HW, Wu XF (2015) Signal-enhanced electrochemical immunosensor for CD36 based on cascade catalysis of a GOx labeled Prussian blue functionalized Ceria nanohybrid. RSC Adv 5(3):1812–1817
104.
go back to reference Shen GY, Hu X, Zhang SB (2014) A signal-enhanced electrochemical immunosensor based on dendrimer functionalized-graphene as a label for the detection of alpha-l-fetoprotein. J Electroanal Chem 717:172–176 Shen GY, Hu X, Zhang SB (2014) A signal-enhanced electrochemical immunosensor based on dendrimer functionalized-graphene as a label for the detection of alpha-l-fetoprotein. J Electroanal Chem 717:172–176
105.
go back to reference Liu Z-H, Zhang G-F, Chen Z, Qiu B, Tang D (2014) Prussian blue-doped nanogold microspheres for enzyme-free electrocatalytic immunoassay of p53 protein. Microchim Acta 181(5–6):581–588 Liu Z-H, Zhang G-F, Chen Z, Qiu B, Tang D (2014) Prussian blue-doped nanogold microspheres for enzyme-free electrocatalytic immunoassay of p53 protein. Microchim Acta 181(5–6):581–588
106.
go back to reference Wang G, Chen L, Zhu Y, He X, Xu G, Zhang X (2014) Prussian blue-Au nanocomposites actuated hemin/G-quadruplexes catalysis for amplified detection of DNA, Hg2+ and adenosine triphosphate. Analyst 139(20):5297–5303 Wang G, Chen L, Zhu Y, He X, Xu G, Zhang X (2014) Prussian blue-Au nanocomposites actuated hemin/G-quadruplexes catalysis for amplified detection of DNA, Hg2+ and adenosine triphosphate. Analyst 139(20):5297–5303
107.
go back to reference Wang T, Fu YC, Chai LY, Chao L, Bu LJ, Meng Y, Chen C, Ma M, Xie QJ, Yao SZ (2014) Filling carbon nanotubes with Prussian blue nanoparticles of high peroxidase-like catalytic activity for colorimetric chemo- and biosensing. Chem-Eur J 20(9):2623–2630 Wang T, Fu YC, Chai LY, Chao L, Bu LJ, Meng Y, Chen C, Ma M, Xie QJ, Yao SZ (2014) Filling carbon nanotubes with Prussian blue nanoparticles of high peroxidase-like catalytic activity for colorimetric chemo- and biosensing. Chem-Eur J 20(9):2623–2630
108.
go back to reference Xu TS, Zhang HY, Li XG, Xie ZH, Li XY (2015) Enzyme-triggered tyramine-enzyme repeats on prussian blue-gold hybrid nanostructures for highly sensitive electrochemical immunoassay of tissue polypeptide antigen. Biosens Bioelectron 73:167–173 Xu TS, Zhang HY, Li XG, Xie ZH, Li XY (2015) Enzyme-triggered tyramine-enzyme repeats on prussian blue-gold hybrid nanostructures for highly sensitive electrochemical immunoassay of tissue polypeptide antigen. Biosens Bioelectron 73:167–173
109.
go back to reference Gao ZD, Qu YF, Li TT, Shrestha NK, Song YY (2014) Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays. Sci Rep 4:6891 Gao ZD, Qu YF, Li TT, Shrestha NK, Song YY (2014) Development of amperometric glucose biosensor based on prussian blue functionlized TiO2 nanotube arrays. Sci Rep 4:6891
110.
go back to reference Pandey PC, Singh R, Pandey Y (2015) Controlled synthesis of functional Ag, Ag–Au/Au–Ag nanoparticles and its nanocomposite with Prussian blue for bioanalytical applications. RSC Adv 5:49671–49679 Pandey PC, Singh R, Pandey Y (2015) Controlled synthesis of functional Ag, Ag–Au/Au–Ag nanoparticles and its nanocomposite with Prussian blue for bioanalytical applications. RSC Adv 5:49671–49679
111.
go back to reference Zhang WM, Ma D, Du JX (2014) Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 120:362–367 Zhang WM, Ma D, Du JX (2014) Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 120:362–367
112.
go back to reference Zhang W, Zhang Y, Chen YH, Li SY, Gu N, Hu SL, Sun Y, Chen X, Li Q (2013) Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. J Nanosci Nanotechnol 13(1):60–67 Zhang W, Zhang Y, Chen YH, Li SY, Gu N, Hu SL, Sun Y, Chen X, Li Q (2013) Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection. J Nanosci Nanotechnol 13(1):60–67
113.
go back to reference Peng C, Hua M-Y, Li N-S, Hsu Y-P, Chen Y-T, Chuang C-K, Pang S-T, Yang H-W (2019) A colorimetric immunosensor based on self-linkable dual-nanozyme for ultrasensitive bladder cancer diagnosis and prognosis monitoring. Biosens Bioelectron 126:581–589 Peng C, Hua M-Y, Li N-S, Hsu Y-P, Chen Y-T, Chuang C-K, Pang S-T, Yang H-W (2019) A colorimetric immunosensor based on self-linkable dual-nanozyme for ultrasensitive bladder cancer diagnosis and prognosis monitoring. Biosens Bioelectron 126:581–589
114.
go back to reference Zhao JL, Gao W, Cai XJ, Xu JJ, Zou DW, Li ZS, Hu B, Zheng YY (2019) Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics 9(10):2843–2855 Zhao JL, Gao W, Cai XJ, Xu JJ, Zou DW, Li ZS, Hu B, Zheng YY (2019) Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics 9(10):2843–2855
Metadata
Title
Prussian Blue and Other Metal–Organic Framework-based Nanozymes
Authors
Wei Zhang
Yang Wu
Zhuoxuan Li
Haijiao Dong
Yu Zhang
Ning Gu
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1490-6_6

Premium Partners