Skip to main content
Top

2018 | OriginalPaper | Chapter

PSense: Automatic Sensitivity Analysis for Probabilistic Programs

Authors : Zixin Huang, Zhenbang Wang, Sasa Misailovic

Published in: Automated Technology for Verification and Analysis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

PSense is a novel system for sensitivity analysis of probabilistic programs. It computes the impact that a noise in the values of the parameters of the prior distributions and the data have on the program’s result. PSense relates the program executions with and without noise using a developer-provided sensitivity metric. PSense calculates the impact as a set of symbolic functions of each noise variable and supports various non-linear sensitivity metrics. Our evaluation on 66 programs from the literature and five common sensitivity metrics demonstrates the effectiveness of PSense.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.: Fairsquare: probabilistic verification of program fairness. In: OOPSLA (2017) Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.: Fairsquare: probabilistic verification of program fairness. In: OOPSLA (2017)
4.
go back to reference Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.: Proving expected sensitivity of probabilistic programs. In: POPL (2018) Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.: Proving expected sensitivity of probabilistic programs. In: POPL (2018)
5.
go back to reference Borgonovo, E., Plischke, E.: Sensitivity analysis: a review of recent advances. Eur. J. Oper. Res. 248(3), 869–887 (2016)MathSciNetCrossRef Borgonovo, E., Plischke, E.: Sensitivity analysis: a review of recent advances. Eur. J. Oper. Res. 248(3), 869–887 (2016)MathSciNetCrossRef
7.
go back to reference Chan, H., Darwiche, A.: Sensitivity analysis in Bayesian networks: from single to multiple parameters. In: UAI (2004) Chan, H., Darwiche, A.: Sensitivity analysis in Bayesian networks: from single to multiple parameters. In: UAI (2004)
8.
go back to reference Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving programs robust. In: FSE (2011) Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving programs robust. In: FSE (2011)
9.
go back to reference Filieri, A., Păsăreanu, C., Visser, W.: Reliability analysis in symbolic pathfinder. In: ICSE (2013) Filieri, A., Păsăreanu, C., Visser, W.: Reliability analysis in symbolic pathfinder. In: ICSE (2013)
10.
go back to reference Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic programs. In: CAV (2016) Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic programs. In: CAV (2016)
11.
go back to reference Gelman, A., Lee, D., Guo, J.: Stan: a probabilistic programming language for Bayesian inference and optimization. J. Educ. Behav. Stats. 40, 530–543 (2015)CrossRef Gelman, A., Lee, D., Guo, J.: Stan: a probabilistic programming language for Bayesian inference and optimization. J. Educ. Behav. Stats. 40, 530–543 (2015)CrossRef
12.
go back to reference Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., Tenenbaum, J.: Church: a language for generative models. In: UAI (2008) Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., Tenenbaum, J.: Church: a language for generative models. In: UAI (2008)
13.
go back to reference Goodman, N., Stuhlmüller, A.: The design and implementation of probabilistic programming languages (2014) Goodman, N., Stuhlmüller, A.: The design and implementation of probabilistic programming languages (2014)
15.
go back to reference Gustafson, P., Srinivasan, C., Wasserman, L.: Local sensitivity analysis. Bayesian Stat. 5, 197–210 (1996)MathSciNet Gustafson, P., Srinivasan, C., Wasserman, L.: Local sensitivity analysis. Bayesian Stat. 5, 197–210 (1996)MathSciNet
16.
go back to reference Holtzen, S., Millstein, T., Broeck, G.: Probabilistic program abstractions. In: UAI (2017) Holtzen, S., Millstein, T., Broeck, G.: Probabilistic program abstractions. In: UAI (2017)
17.
go back to reference Iooss, B., Saltelli, A.: Introduction to sensitivity analysis. Handbook of Uncertainty Quantification, pp. 1–20. Springer, Cham (2016) Iooss, B., Saltelli, A.: Introduction to sensitivity analysis. Handbook of Uncertainty Quantification, pp. 1–20. Springer, Cham (2016)
18.
go back to reference Llerena, Y., Su, G., Rosenblum, D.: Probabilistic model checking of perturbed mdps with applications to cloud computing. In: FSE (2017) Llerena, Y., Su, G., Rosenblum, D.: Probabilistic model checking of perturbed mdps with applications to cloud computing. In: FSE (2017)
19.
go back to reference Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order probabilistic programming platform with programmable inference. ArXivarXiv:1404.0099 (2014) Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order probabilistic programming platform with programmable inference. ArXivarXiv:​1404.​0099 (2014)
20.
go back to reference Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic inference by program transformation in hakaru. In: FLOPS (2016) Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic inference by program transformation in hakaru. In: FLOPS (2016)
21.
go back to reference Olmedo, F., Kaminski, B., Katoen, J., Matheja, C.: Reasoning about recursive probabilistic programs. In: LICS (2016) Olmedo, F., Kaminski, B., Katoen, J., Matheja, C.: Reasoning about recursive probabilistic programs. In: LICS (2016)
22.
go back to reference Saltelli, A., et al.: Global sensitivity analysis: the primer (2008) Saltelli, A., et al.: Global sensitivity analysis: the primer (2008)
23.
go back to reference Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring whole program properties from finitel many paths. In: PLDI 2013 Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring whole program properties from finitel many paths. In: PLDI 2013
24.
go back to reference Tran, D., Kucukelbir, A., Dieng, A., Rudolph, M., Liang, D., Blei, D.: Edward: a library for probabilistic modeling, inference, and criticism. arXiv:1610.09787 (2016) Tran, D., Kucukelbir, A., Dieng, A., Rudolph, M., Liang, D., Blei, D.: Edward: a library for probabilistic modeling, inference, and criticism. arXiv:​1610.​09787 (2016)
25.
go back to reference van der Gaag, L., Renooij, S., Coupé, V.: Sensitivity analysis of probabilistic networks. Advances in Probabilistic Graphical Models, pp. 103–124. Springer, Berlin (2007)CrossRef van der Gaag, L., Renooij, S., Coupé, V.: Sensitivity analysis of probabilistic networks. Advances in Probabilistic Graphical Models, pp. 103–124. Springer, Berlin (2007)CrossRef
26.
go back to reference Wang, D., Hoffmann, J., Reps, T.: PMAF: an algebraic framework for static analysis of probabilistic programs. In: PLDI (2018) Wang, D., Hoffmann, J., Reps, T.: PMAF: an algebraic framework for static analysis of probabilistic programs. In: PLDI (2018)
27.
go back to reference Wood, F., van de Meent, J., Mansinghka, V.: A new approach to probabilistic programming inference. In: AISTATS (2014) Wood, F., van de Meent, J., Mansinghka, V.: A new approach to probabilistic programming inference. In: AISTATS (2014)
Metadata
Title
PSense: Automatic Sensitivity Analysis for Probabilistic Programs
Authors
Zixin Huang
Zhenbang Wang
Sasa Misailovic
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-01090-4_23

Premium Partner