2021  OriginalPaper  Chapter Open Access
Pseudotransient 3D Conjugate Heat Transfer Simulation and Lifetime Prediction of a Rocket Combustion Chamber
Authors: Oliver Barfusz, Felix Hötte, Stefanie Reese, Matthias Haupt
Publisher: Springer International Publishing
1 Introduction
2 Conjugate Heat Transfer Simulation
2.1 Computational Model
Variable

Inlet

Outlet

Walls (coupling surfaces)

Symmetry


\(T, \mathrm{K}\)

286.5

\(\frac{\partial T}{\partial n}=0\)

\(T_{Struct}\)

\(\frac{\partial T}{\partial n}=0\)

\(U_n, \mathrm{m/s}\)

5.6175

\(\frac{\partial U_n}{\partial n}=0\)

0

0

\(U_p, \mathrm{m/s}\)

0

\(\frac{\partial U_p}{\partial n}=0\)

0

\(\frac{\partial U_p}{\partial n}=0\)

p,
bar

\(\frac{\partial p}{\partial n}=0\)

70

\(\frac{\partial p}{\partial n}=0\)

\(\frac{\partial p}{\partial n}=0\)

\(\omega , \mathrm{1/s}\)

2465

\(\frac{\partial \omega }{\partial n}=0\)

\(\frac{80 \nu }{y^2}\)

\(\frac{\partial \omega }{\partial n}=0\)

\(k, \mathrm{m}^2/\mathrm{s}^2\)

0.1183

\(\frac{\partial k}{\partial n}=0\)

\(10^{10}\)

\(\frac{\partial k}{\partial n}=0\)

\(\nu _t, \mathrm{m}^2/\mathrm{s}\)

/

/

0

\(\frac{\partial \nu _t}{\partial n}=0\)

\(\alpha _t, \mathrm{kg/(m}\cdot \mathrm{s})\)

0

\(\frac{\partial \alpha _t}{\partial n}=0\)

0

\(\frac{\partial \alpha _t}{\partial n}=0\)

Variable

O2 Inlet

CH4 Inlet

Outlet

Chamber

Specimen

Symmetry

Others


\(T, \mathrm{K}\)

275.6

261.2

\(\frac{\partial T}{\partial n}=0\)

500

\(T_{Struct}\)

\(\frac{\partial T}{\partial n}=0\)

\(\frac{\partial T}{\partial n}=0\)

\(U_n, \mathrm{m/s}\)

57.6, 129.5

41.0, 93.9

\(\frac{\partial U_n}{\partial n}=0\)

0

0

0

0

\(U_p, \mathrm{m/s}\)

0

0

\(\frac{\partial U_p}{\partial n}=0\)

0

0

\(\frac{\partial U_p}{\partial n}=0\)

0

p,
bar

\(\frac{\partial p}{\partial n}=0\)

\(\frac{\partial p}{\partial n}=0\)

7.31, 18.9

\(\frac{\partial p}{\partial n}=0\)

\(\frac{\partial p}{\partial n}=0\)

\(\frac{\partial p}{\partial n}=0\)

\(\frac{\partial p}{\partial n}=0\)

\(k, \mathrm{m}^2/\mathrm{s}^2\)

12.4, 62.9

6.3, 33.1

\(\frac{\partial k}{\partial n}=0\)

WF

WF

\(\frac{\partial k}{\partial n}=0\)

WF

\(\epsilon , 10^5 \mathrm{m}^2/\mathrm{s}^3\)

0.26, 2.93

0.37, 4.46

\(\frac{\partial \epsilon }{\partial n}=0\)

WF

WF

\(\frac{\partial \epsilon }{\partial n}=0\)

WF

\(\overline{f}, \)

0

1

\(\frac{\partial \overline{f}}{\partial n}=0\)

\(\frac{\partial \overline{f}}{\partial n}=0\)

\(\frac{\partial \overline{f}}{\partial n}=0\)

\(\frac{\partial \overline{f}}{\partial n}=0\)

\(\frac{\partial \overline{f}}{\partial n}=0\)

\(\overline{f'^2}, \)

0

0

\(\frac{\partial \overline{f'^2}}{\partial n}=0\)

0

0

\(\frac{\partial \overline{f'^2}}{\partial n}=0\)

0

2.2 Results and Validation
3 Lifetime Prediction
3.1 Transient Thermal Analysis
Phase (–)

Time (s)

\(\alpha _\mathrm{hg}\)
\(\left( \frac{\mathrm{{mW}}}{(\mathrm{{K}}\,\mathrm{{mm}}^2)}\right) \)

\(T_{\mathrm{{hg}}}\,(\mathrm{{K}})\)

\(\alpha _{\mathrm{{cf}}}\)
\(\left( \frac{\mathrm{{mW}}}{(\mathrm{{K}}\,\mathrm{{mm}}^2)}\right) \)

\(T_{\mathrm{{cf}}}\,(\mathrm{{K}})\)


Pre cooling

0.0–2.0

–

293

1.3208

288

Hot run 1

2.0–9.5

2.543

2400

1.3208

288

Hot run 2

9.5–29.5

5.066

2400

1.3208

288

Post cooling

29.5–60.0

3.0–10.0

250

1.3208

288

3.2 Quasistatic Mechanical Analysis
Phase (–)

Time (s)

\(p_\mathrm{hg}\) (MPa)

\(p_\mathrm{cf}\) (MPa)


Pre cooling

0.0–2.0

–

7.0

Hot run 1

2.0–9.5

0.9

7.0

Hot run 2

9.5–29.5

1.7

7.0

Post cooling

29.5–60.0

–

7.0
