Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Pseudoparabolic and Fractional Equations of Option Pricing

Author : Andrey Itkin

Published in: Pricing Derivatives Under Lévy Models

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a new, unified approach to solving the jump–diffusion partial integrodifferential equations (PIDEs) that often appear in mathematical finance. Our method consists of the following steps. First, a second-order operator splitting on financial processes (diffusion and jumps) is applied to these PIDEs. To solve the diffusion equation, we use standard finite difference methods, which for multidimensional problems could also include splitting on various dimensions. For the jump part, we transform the jump integral into a pseudodifferential operator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In general, the CF of a jump–diffusion process in not known, unless we are talking about a Lévy process. What is known is the so-called symbol of the generator.
 
2
For the cosine transform, see [25, 26, 28] and references therein. For the modern FFT technique, see [16, 36, 38] and references therein.
 
3
For some models, it can be computed analytically, so in what follows, we do not take such models into account.
 
4
A second-order approximation could in principle be constructed as well, but that would result in a massive calculation for the coefficients. Therefore, this approach has not been further elaborated.
 
5
This equation arises naturally at some step of the splitting procedure if splitting is organized by separating diffusion from jumps.
 
6
In other words, the PIDE grid is a superset of the corresponding PDE grid.
 
7
We recall that a standard Brownian motion already has paths of infinite variation. Therefore, the Lévy process in Eq. (5.2) has infinite variation, since it contains a continuous martingale component. However, here we refer to the infinite variation that comes from the jumps.
 
9
We use 2N instead of N because in order to avoid undesirable wraparound errors, a common technique is to embed a discretization Toeplitz matrix in a circulant matrix. This requires doubling the initial vector of unknowns.
 
10
We keep the same notation for the put option value, which is C(x, τ), since this comparison means basically to compare two numerical methods rather than provide some deep economic meaning.
 
11
It actually uses 4N points, as it discussed earlier.
 
Literature
1.
go back to reference A.M. Abu-Saman, A.M. Assaf, Stability and convergence of Crank–Nicholson method for fractional advection dispersion equation. Adv. Appl. Math. Anal. 2 (2), 117–125 (2007)MATH A.M. Abu-Saman, A.M. Assaf, Stability and convergence of Crank–Nicholson method for fractional advection dispersion equation. Adv. Appl. Math. Anal. 2 (2), 117–125 (2007)MATH
2.
go back to reference L. Andersen, J. Andreasen, Jump diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)CrossRefMATH L. Andersen, J. Andreasen, Jump diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)CrossRefMATH
5.
go back to reference R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960)MATH R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960)MATH
6.
go back to reference B. Böttcher, R.L. Schilling, J. Wang, Lévy-Type Processes: Construction, Approximation and Sample Path Properties. Lecture Notes in Mathematics, 2009, Lévy Matters III (Springer, Berlin, 2014) B. Böttcher, R.L. Schilling, J. Wang, Lévy-Type Processes: Construction, Approximation and Sample Path Properties. Lecture Notes in Mathematics, 2009, Lévy Matters III (Springer, Berlin, 2014)
7.
go back to reference S. Boyarchenko, S. Levendorskii, Non-Gaussian Merton–Black–Scholes Theory (World Scientific, Singapore, 2002)CrossRefMATH S. Boyarchenko, S. Levendorskii, Non-Gaussian Merton–Black–Scholes Theory (World Scientific, Singapore, 2002)CrossRefMATH
8.
go back to reference S.I. Boyarchenko, S.Z. Levendorskii, Option pricing for truncated Lévy processes. Int. J. Theor. Appl. Finance 3 (3), 549–552 (2000)CrossRefMATH S.I. Boyarchenko, S.Z. Levendorskii, Option pricing for truncated Lévy processes. Int. J. Theor. Appl. Finance 3 (3), 549–552 (2000)CrossRefMATH
9.
go back to reference M. Brennan, E. Schwartz, Finite difference methods and jump processes arising in the pricing of contingent claims. J. Financ. Quant. Anal. 13 (3), 461–474 (1978)CrossRef M. Brennan, E. Schwartz, Finite difference methods and jump processes arising in the pricing of contingent claims. J. Financ. Quant. Anal. 13 (3), 461–474 (1978)CrossRef
10.
go back to reference P. Carr, H. Geman, D. Madan, M. Yor, The fine structure of asset returns: An empirical investigation. J. Bus. 75 (2), 305–332 (2002)CrossRef P. Carr, H. Geman, D. Madan, M. Yor, The fine structure of asset returns: An empirical investigation. J. Bus. 75 (2), 305–332 (2002)CrossRef
11.
go back to reference P. Carr, A. Mayo, On the numerical evaluation of option prices in jump diffusion processes. Eur. J. Finance 13 (4), 353–372 (2007)CrossRef P. Carr, A. Mayo, On the numerical evaluation of option prices in jump diffusion processes. Eur. J. Finance 13 (4), 353–372 (2007)CrossRef
12.
go back to reference P. Carr, L. Wu, Time-changed Lévy processes and option pricing. J. Financ. Econ. 71, 113–141 (2004)CrossRef P. Carr, L. Wu, Time-changed Lévy processes and option pricing. J. Financ. Econ. 71, 113–141 (2004)CrossRef
13.
go back to reference A. Cartea, D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps. Physica A 374, 749–763 (2007)CrossRef A. Cartea, D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps. Physica A 374, 749–763 (2007)CrossRef
14.
go back to reference R. Cont, P. Tankov, Financial Modelling with Jump Processes. Financial Mathematics Series (Chapman & Hall /CRCl, London, 2004) R. Cont, P. Tankov, Financial Modelling with Jump Processes. Financial Mathematics Series (Chapman & Hall /CRCl, London, 2004)
15.
go back to reference R. Cont, E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. Technical Report 513, Rapport Interne CMAP, 2003 R. Cont, E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. Technical Report 513, Rapport Interne CMAP, 2003
16.
go back to reference M. de Innocentis, S. Levendorskii, Pricing discrete barrier options and credit default swaps under Lévy processes. Quant. Finance 14 (8), 1337–1365 (2014)MathSciNetCrossRefMATH M. de Innocentis, S. Levendorskii, Pricing discrete barrier options and credit default swaps under Lévy processes. Quant. Finance 14 (8), 1337–1365 (2014)MathSciNetCrossRefMATH
17.
go back to reference O.L. de Lange, R.E. Raab, Operator Methods in Quantum Mechanics, Chapter 3 (Oxford Science Publications, Oxford, 1992) O.L. de Lange, R.E. Raab, Operator Methods in Quantum Mechanics, Chapter 3 (Oxford Science Publications, Oxford, 1992)
18.
go back to reference Y. d’Halluin, P.A. Forsyth, G. Labahn, A semi-Lagrangian approach for American Asian options under jump diffusion. SIAM J. Sci. Comput. 27, 315–345 (2005)MathSciNetCrossRefMATH Y. d’Halluin, P.A. Forsyth, G. Labahn, A semi-Lagrangian approach for American Asian options under jump diffusion. SIAM J. Sci. Comput. 27, 315–345 (2005)MathSciNetCrossRefMATH
19.
go back to reference Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, A penalty method for American options with jump diffusion processes. Numer. Math. 97, 321–352 (2004)MathSciNetCrossRefMATH Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, A penalty method for American options with jump diffusion processes. Numer. Math. 97, 321–352 (2004)MathSciNetCrossRefMATH
20.
go back to reference Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)MathSciNetCrossRefMATH Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)MathSciNetCrossRefMATH
21.
go back to reference D.J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. The Wiley Finance Series (Wiley, New York, 2006)CrossRefMATH D.J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. The Wiley Finance Series (Wiley, New York, 2006)CrossRefMATH
22.
go back to reference E. Eberlein, Jump-type Lévy processes, in Handbook of Financial Time Series, ed. by T.G. Andersen, R.A. Davis, J.-P. Kreiß, T. Mikosch (Springer, New York, 2009), pp. 439–455CrossRef E. Eberlein, Jump-type Lévy processes, in Handbook of Financial Time Series, ed. by T.G. Andersen, R.A. Davis, J.-P. Kreiß, T. Mikosch (Springer, New York, 2009), pp. 439–455CrossRef
24.
go back to reference M. Evans, N. Hastings, B. Peacock, Erlang distribution, in Statistical Distributions, chapter 12, pp. 71–73, 3rd edn. (Willey, New York, 2000) M. Evans, N. Hastings, B. Peacock, Erlang distribution, in Statistical Distributions, chapter 12, pp. 71–73, 3rd edn. (Willey, New York, 2000)
25.
go back to reference F. Fang, C.W. Oosterlee, A novel pricing method for European options based on Fourier–Cosine series expansions. SIAM J. Sci. Comput. 31 (2), 826–848 (2008)MathSciNetCrossRefMATH F. Fang, C.W. Oosterlee, A novel pricing method for European options based on Fourier–Cosine series expansions. SIAM J. Sci. Comput. 31 (2), 826–848 (2008)MathSciNetCrossRefMATH
26.
go back to reference F. Fang, C.W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier–Cosine series expansions. Numer. Math. 114 (1), 27–62 (2009)MathSciNetCrossRefMATH F. Fang, C.W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier–Cosine series expansions. Numer. Math. 114 (1), 27–62 (2009)MathSciNetCrossRefMATH
27.
28.
29.
go back to reference K.J. In’t Hout, S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7 (2), 303–320 (2010)MathSciNet K.J. In’t Hout, S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7 (2), 303–320 (2010)MathSciNet
30.
go back to reference A. Itkin, P. Carr, Jumps without tears: A new splitting technology for barrier options. Int. J. Numer. Anal. Model. 8 (4), 667–704 (2011)MathSciNetMATH A. Itkin, P. Carr, Jumps without tears: A new splitting technology for barrier options. Int. J. Numer. Anal. Model. 8 (4), 667–704 (2011)MathSciNetMATH
31.
go back to reference A. Itkin, P. Carr, Using pseudoparabolic and fractional equations for option pricing in jump diffusion models. Comput. Econ. 40 (1), 63–104 (2012)CrossRefMATH A. Itkin, P. Carr, Using pseudoparabolic and fractional equations for option pricing in jump diffusion models. Comput. Econ. 40 (1), 63–104 (2012)CrossRefMATH
33.
go back to reference N. Jacob, Pseudo-Differential Operators and Markov Processes, volume 94 of Mathematical Research Notes (Academie-Verlag, Berlin, 1996) N. Jacob, Pseudo-Differential Operators and Markov Processes, volume 94 of Mathematical Research Notes (Academie-Verlag, Berlin, 1996)
34.
go back to reference N. Jacob, R.L. Schilling, Lévy processes: theory and applications, chapter Lévy-Type Processes and Pseudodifferential Operators, pp. 139–167 (Birkhauser, Boston, 2001) N. Jacob, R.L. Schilling, Lévy processes: theory and applications, chapter Lévy-Type Processes and Pseudodifferential Operators, pp. 139–167 (Birkhauser, Boston, 2001)
35.
go back to reference I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 52, 1197–1199 (1995)CrossRef I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 52, 1197–1199 (1995)CrossRef
36.
go back to reference O. Kudryavtsev, S.Z. Levendorskii, Fast and accurate pricing of barrier options under Lévy processes. Finance Stochast. 13 (4), 531–562 (2009)CrossRefMATH O. Kudryavtsev, S.Z. Levendorskii, Fast and accurate pricing of barrier options under Lévy processes. Finance Stochast. 13 (4), 531–562 (2009)CrossRefMATH
37.
go back to reference S. Lee, X. Liu, H. Sun, Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19 (1), 87–101 (2012)MathSciNetCrossRefMATH S. Lee, X. Liu, H. Sun, Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19 (1), 87–101 (2012)MathSciNetCrossRefMATH
38.
go back to reference S.Z. Levendorskii, Method of paired contours and pricing barrier options and CDS of long maturities. Int. J. Theor. Appl. Finance 17 (5), 1450033–1450092 (2014)MathSciNetCrossRefMATH S.Z. Levendorskii, Method of paired contours and pricing barrier options and CDS of long maturities. Int. J. Theor. Appl. Finance 17 (5), 1450033–1450092 (2014)MathSciNetCrossRefMATH
39.
go back to reference A. Lipton, A. Sepp, Credit value adjustment for credit default swaps via the structural default model. J. Credit Risk 5 (2), 123–146 (2009)CrossRef A. Lipton, A. Sepp, Credit value adjustment for credit default swaps via the structural default model. J. Credit Risk 5 (2), 123–146 (2009)CrossRef
40.
go back to reference D. Madan, E. Seneta, The variance gamma (V.G.) model for share market returns. J. Bus. 63 (4), 511–524 (1990) D. Madan, E. Seneta, The variance gamma (V.G.) model for share market returns. J. Bus. 63 (4), 511–524 (1990)
41.
go back to reference M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH
42.
go back to reference M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH
43.
go back to reference E. Sousa, Finite difference approximations for a fractional advection diffusion problem. Technical Report 08-26, Departamento de Matematica, Universidade de Coimbra, 2008 E. Sousa, Finite difference approximations for a fractional advection diffusion problem. Technical Report 08-26, Departamento de Matematica, Universidade de Coimbra, 2008
44.
go back to reference A.K. Strauss, Numerical Analysis of Jump–Diffusion Models for Option Pricing, PhD thesis, Virginia Polytechnic Institute and State University, 2006 A.K. Strauss, Numerical Analysis of Jump–Diffusion Models for Option Pricing, PhD thesis, Virginia Polytechnic Institute and State University, 2006
45.
go back to reference C. Tadjeran, M.M. Meerschaert, H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MathSciNetCrossRefMATH C. Tadjeran, M.M. Meerschaert, H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MathSciNetCrossRefMATH
46.
go back to reference D. Tangman, A. Gopaul, M. Bhuruth, Exponential time integration and Chebyshev discretisation schemes for fast pricing of options. Appl. Numer. Math. 58 (9), 1309–1319 (2008)MathSciNetCrossRefMATH D. Tangman, A. Gopaul, M. Bhuruth, Exponential time integration and Chebyshev discretisation schemes for fast pricing of options. Appl. Numer. Math. 58 (9), 1309–1319 (2008)MathSciNetCrossRefMATH
47.
go back to reference D. Tavella, C. Randall, Pricing Financial Instruments. The Finite-Difference Method. Wiley Series in Financial Engineering (Wiley, New York, 2000) D. Tavella, C. Randall, Pricing Financial Instruments. The Finite-Difference Method. Wiley Series in Financial Engineering (Wiley, New York, 2000)
48.
go back to reference P. Wilmott, Derivatives (Willey, New York, 1998) P. Wilmott, Derivatives (Willey, New York, 1998)
49.
go back to reference K. Zhang, S. Wang, A computational scheme for options under jump diffusion processes. Int. J. Numer. Anal. Model. 6 (1), 110–123 (2009)MathSciNetMATH K. Zhang, S. Wang, A computational scheme for options under jump diffusion processes. Int. J. Numer. Anal. Model. 6 (1), 110–123 (2009)MathSciNetMATH
50.
go back to reference J. Zhou, P.S.Hagan, G. Schleiniger, Option pricing and implied volatility surfaces with the generalized tempered stable processes. FMA Annual Meeting, 2005 J. Zhou, P.S.Hagan, G. Schleiniger, Option pricing and implied volatility surfaces with the generalized tempered stable processes. FMA Annual Meeting, 2005
Metadata
Title
Pseudoparabolic and Fractional Equations of Option Pricing
Author
Andrey Itkin
Copyright Year
2017
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-6792-6_5

Premium Partners