Skip to main content
Top

2017 | OriginalPaper | Chapter

6. Pseudoparabolic Equations for Various Lévy Models

Author : Andrey Itkin

Published in: Pricing Derivatives Under Lévy Models

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, following Itkin (Algorithmic Finance 3:233–250, 2014; J. Comput. Finance 19:29–70, 2016), we describe a generalization of the approach presented in Section 5.​4 For the sake of convenience, we call this method MPsDO (method of pseudodifferential operators). The idea of transforming a nonlocal jump operator into the local pseudodifferential operator here is implemented using the representation, well known in physics, of the translational operator as an operator exponential. We also establish a connection between this representation and the characteristic function of the jump process. Finally, for various popular jump models, which include models of jumps with both finite and infinite activity, and finite and infinite variation, we construct an FD scheme for solving the corresponding fractional PDE. These FD schemes provide second-order approximation in both space and time, are unconditionally stable, and preserve nonnegativity of the solution. Various numerical tests are presented to demonstrate such behavior.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A second-order approximation could in principle be constructed as well, resulting, however, in a massive calculation of the coefficients. That probably discouraged researchers from further elaborating this approach.
 
2
So the PIDE grid is a superset of the PDE grid.
 
3
In more advanced approaches, this step could be eliminated; see [42]. Also, if the coefficients of the linear interpolation are precomputed, the overhead of performance for doing interpolation is relatively small; see [18, 19].
 
4
It is actually a double exponential operator.
 
5
The approach presented below is also applicable to single-barrier options, or to options with a nonvanilla payoff, e.g., digitals.
 
6
With a proposed improvement that reduces the total complexity of the method from O(NΔ s) to O(N).
 
7
For positive jumps, this could be done in a similar way. The denominator in Eq. (6.12) then changes to ϕ − 1, and the term ϕ I + aA 2 B changes to ϕ IaA 2 F , where ϕ > 1.
 
8
Some care should be taken regarding the boundary values of A 2 C to guarantee this. Usually, introduction of ghost points at the boundaries helps to increase the accuracy of the method. Alternatively, one could use another approximation of the term \((\phi +a\triangledown )^{-1}\) in Eq. (6.11), which is (ϕ I + aA B )−1. This reduces the order of approximation from the exact second order to some order in between 1 and 2, but at the same time, significantly improves the properties of the resulting matrix J.
 
9
This method is not very accurate. But since the exact solution is not known, it provides a plausible estimate of the convergence.
 
10
All experiments were computed in Matlab with an Intel Pentium 4 CPU 3.2 GHz under x86 Windows 7 OS. Obviously, a C++ implementation provides better performance by roughly a factor of 5.
 
11
Don’t confuse this with the accuracy of the entire three steps of Strang’s algorithm, which is O(Δ τ 2). The test validates just the convergence in h, not in Δ τ.
 
12
In Itkin and Carr’s paper, jump integrals were defined on half-infinite positive and negative domains, while here they are defined on the whole infinite domain. Therefore, to prove this proposition, simply use  =  0 + 0 and then apply Proposition 7 from [30].
 
13
An example of an A-stable scheme is the familiar Crank–Nicolson scheme. But we want to underline that 0 doesn’t belong to the spectrum of M, so formally, the scheme is L-stable, though with convergence properties close to those of an A-stable scheme. The formal L-stability is important, e.g., for computing the option Greeks.
 
14
As was mentioned in the introduction, in this particular case, FFT is definitely more efficient, so we provide this comparison just for illustrative purposes.
 
15
For explicit formulas to provide this translation, see [36].
 
16
They are also known as modified Bessel functions of the second kind, or Macdonald functions; see [47].
 
17
This method is not very accurate. But since the exact solution is not known, it provides a plausible estimate of the convergence.
 
18
Don’t confuse this with the accuracy of the whole three steps Strang’s algorithm, which is O(Δ τ 2). The test validates just the convergence in h, not in Δ τ.
 
19
We do this by expanding \(\cos \left (\frac{a\triangledown + b} {2}\right )\) in the denominator into a series in h.
 
20
This complexity is proportional to a certain coefficient, which in this case can be of order 10. Nevertheless, as will be shown in our tests, the methods is significantly faster than the FFT.
 
21
The standard FFT method at these values of the parameters is very sensitive to the choice of the damping factor α, and therefore, this price was computed using the cosine method of [23].
 
Literature
1.
go back to reference M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1964)MATH M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1964)MATH
2.
go back to reference A.M. Abu-Saman, A.M. Assaf, Stability and convergence of Crank–Nicholson method for fractional advection dispersion equation. Adv. Appl. Math. Anal. 2 (2), 117–125 (2007)MATH A.M. Abu-Saman, A.M. Assaf, Stability and convergence of Crank–Nicholson method for fractional advection dispersion equation. Adv. Appl. Math. Anal. 2 (2), 117–125 (2007)MATH
3.
go back to reference L. Andersen, J. Andreasen, Jump diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)CrossRefMATH L. Andersen, J. Andreasen, Jump diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)CrossRefMATH
5.
go back to reference I. Bakas, B. Khesin, E. Kiritsis, The logarithm of the derivative operator and higher spin algebras of w ∞ type. Commun. Math. Phys. 151 (2), 233–243 (1993)MathSciNetCrossRefMATH I. Bakas, B. Khesin, E. Kiritsis, The logarithm of the derivative operator and higher spin algebras of w type. Commun. Math. Phys. 151 (2), 233–243 (1993)MathSciNetCrossRefMATH
7.
go back to reference O.E. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle size, in Proceedings of the Royal Society of London, volume A, pp. 401–419 (1977) O.E. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle size, in Proceedings of the Royal Society of London, volume A, pp. 401–419 (1977)
8.
go back to reference R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960)MATH R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960)MATH
9.
go back to reference A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences (SIAM, Philadelphia, 1994)CrossRefMATH A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences (SIAM, Philadelphia, 1994)CrossRefMATH
10.
go back to reference S. Boyarchenko, S. Levendorskii, Non-Gaussian Merton–Black–Scholes Theory (World Scientific, Singapore, 2002)CrossRefMATH S. Boyarchenko, S. Levendorskii, Non-Gaussian Merton–Black–Scholes Theory (World Scientific, Singapore, 2002)CrossRefMATH
11.
go back to reference P. Carr, D. Madan, Option valuation using the fast Fourier transform. J. Comput. Finance 2 (4), 61–73 (1999)CrossRef P. Carr, D. Madan, Option valuation using the fast Fourier transform. J. Comput. Finance 2 (4), 61–73 (1999)CrossRef
12.
go back to reference P. Carr, A. Mayo, On the numerical evaluation of option prices in jump diffusion processes. Eur. J. Finance 13 (4), 353–372 (2007)CrossRef P. Carr, A. Mayo, On the numerical evaluation of option prices in jump diffusion processes. Eur. J. Finance 13 (4), 353–372 (2007)CrossRef
13.
go back to reference P. Carr, D. Madan, Towards a theory of volatility trading, in Risk Book on Volatility, ed. by Robert Jarrow (Risk, New York, 1998), pp. 417–427 P. Carr, D. Madan, Towards a theory of volatility trading, in Risk Book on Volatility, ed. by Robert Jarrow (Risk, New York, 1998), pp. 417–427
14.
go back to reference A. Cartea, D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps. Physica A 374, 749–763 (2007)CrossRef A. Cartea, D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps. Physica A 374, 749–763 (2007)CrossRef
15.
go back to reference R. Cont, E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. Technical Report 513, Rapport Interne CMAP, 2003 R. Cont, E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. Technical Report 513, Rapport Interne CMAP, 2003
17.
go back to reference E. Denman, A. Beavers, The matrix sign function and computations in systems. Appl. Math. Comput. 2 (1), 63–94 (1976)MathSciNetMATH E. Denman, A. Beavers, The matrix sign function and computations in systems. Appl. Math. Comput. 2 (1), 63–94 (1976)MathSciNetMATH
18.
go back to reference Y. d’Halluin, P.A. Forsyth, G. Labahn, A semi-Lagrangian approach for American Asian options under jump diffusion. SIAM J. Sci. Comput. 27, 315–345 (2005)MathSciNetCrossRefMATH Y. d’Halluin, P.A. Forsyth, G. Labahn, A semi-Lagrangian approach for American Asian options under jump diffusion. SIAM J. Sci. Comput. 27, 315–345 (2005)MathSciNetCrossRefMATH
19.
go back to reference Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, A penalty method for American options with jump diffusion processes. Numer. Math. 97, 321–352 (2004)MathSciNetCrossRefMATH Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, A penalty method for American options with jump diffusion processes. Numer. Math. 97, 321–352 (2004)MathSciNetCrossRefMATH
20.
go back to reference Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)MathSciNetCrossRefMATH Y. d’Halluin, P.A. Forsyth, K.R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)MathSciNetCrossRefMATH
21.
22.
go back to reference E. Eberlein, U. Keller, K. Prause, New insights into smile, mispricing, and value at risk: The hyperbolic model. J. Bus. 71 (3), 371–406 (1998)CrossRef E. Eberlein, U. Keller, K. Prause, New insights into smile, mispricing, and value at risk: The hyperbolic model. J. Bus. 71 (3), 371–406 (1998)CrossRef
23.
go back to reference F. Fang, C.W. Oosterlee, A novel pricing method for European options based on Fourier–Cosine series expansions. SIAM J. Sci. Comput. 31 (2), 826–848 (2008)MathSciNetCrossRefMATH F. Fang, C.W. Oosterlee, A novel pricing method for European options based on Fourier–Cosine series expansions. SIAM J. Sci. Comput. 31 (2), 826–848 (2008)MathSciNetCrossRefMATH
24.
go back to reference G.H. Golub, C.F Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore, 1983) G.H. Golub, C.F Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore, 1983)
25.
go back to reference R.M. Gray, Toeplitz and circulant matrices: A review. Found. Trends Commun. Inform. Theory 2 (3), 155–239 (2006)CrossRefMATH R.M. Gray, Toeplitz and circulant matrices: A review. Found. Trends Commun. Inform. Theory 2 (3), 155–239 (2006)CrossRefMATH
26.
go back to reference K.J. In’t Hout, S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7 (2), 303–320 (2010)MathSciNet K.J. In’t Hout, S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7 (2), 303–320 (2010)MathSciNet
28.
go back to reference A. Itkin, Splitting and matrix exponential approach for jump–diffusion models with inverse normal Gaussian, hyperbolic and Meixner jumps. Algorithmic Finance 3, 233–250 (2014)MathSciNet A. Itkin, Splitting and matrix exponential approach for jump–diffusion models with inverse normal Gaussian, hyperbolic and Meixner jumps. Algorithmic Finance 3, 233–250 (2014)MathSciNet
29.
go back to reference A. Itkin, Efficient solution of backward jump–diffusion PIDEs with splitting and matrix exponentials. J. Comput. Finance 19, 29–70 (2016)CrossRef A. Itkin, Efficient solution of backward jump–diffusion PIDEs with splitting and matrix exponentials. J. Comput. Finance 19, 29–70 (2016)CrossRef
30.
go back to reference A. Itkin, P. Carr, Using pseudoparabolic and fractional equations for option pricing in jump diffusion models. Comput. Econ. 40 (1), 63–104 (2012)CrossRefMATH A. Itkin, P. Carr, Using pseudoparabolic and fractional equations for option pricing in jump diffusion models. Comput. Econ. 40 (1), 63–104 (2012)CrossRefMATH
31.
go back to reference S.G. Kou, H. Wang, Option pricing under a double exponential jump diffusion model. Manag. Sci. 50 (9), 1178–1192 (2004)CrossRef S.G. Kou, H. Wang, Option pricing under a double exponential jump diffusion model. Manag. Sci. 50 (9), 1178–1192 (2004)CrossRef
32.
go back to reference A.L. Lewis, A simple option formula for general jump–diffusion and other exponential Lévy processes. Manuscript, Envision Financial Systems and OptionCity.net, Newport Beach, California, USA, 2001 A.L. Lewis, A simple option formula for general jump–diffusion and other exponential Lévy processes. Manuscript, Envision Financial Systems and OptionCity.net, Newport Beach, California, USA, 2001
33.
go back to reference A. Lipton, Mathematical Methods For Foreign Exchange: A Financial Engineer’s Approach (World Scientific, Singapore, 2001)CrossRefMATH A. Lipton, Mathematical Methods For Foreign Exchange: A Financial Engineer’s Approach (World Scientific, Singapore, 2001)CrossRefMATH
34.
go back to reference A. Lipton, Assets with jumps. RISK, 149–153 (2002) A. Lipton, Assets with jumps. RISK, 149–153 (2002)
36.
go back to reference D. Madan, F. Milne, H. Shefrin, The multinomial option pricing model and its Brownian and Poisson limits. Rev. Financ. Stud. 2, 251–265 (1989)CrossRef D. Madan, F. Milne, H. Shefrin, The multinomial option pricing model and its Brownian and Poisson limits. Rev. Financ. Stud. 2, 251–265 (1989)CrossRef
37.
go back to reference M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH
38.
go back to reference M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH
39.
go back to reference R.C. Merton, Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3 (1), 125–144 (1976)CrossRefMATH R.C. Merton, Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3 (1), 125–144 (1976)CrossRefMATH
40.
go back to reference C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)MathSciNetCrossRefMATH C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)MathSciNetCrossRefMATH
41.
go back to reference F.W.J. Olver, D.M Lozier, R.F. Boisvert, C.W. Clark, Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010) F.W.J. Olver, D.M Lozier, R.F. Boisvert, C.W. Clark, Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010)
43.
go back to reference W. Schoutens, Meixner processes in finance. Technical report, K.U.Leuven–Eurandom, 2001 W. Schoutens, Meixner processes in finance. Technical report, K.U.Leuven–Eurandom, 2001
44.
go back to reference W. Schoutens, Levy Processes in Finance: Pricing Financial Derivatives (Wiley, New York, 2003)CrossRef W. Schoutens, Levy Processes in Finance: Pricing Financial Derivatives (Wiley, New York, 2003)CrossRef
45.
go back to reference W. Schoutens, J.L. Teugels, Lévy processes, polynomials and martingales. Commun. Stat. Stoch. Models 14 (1,2), 335–349 (1998) W. Schoutens, J.L. Teugels, Lévy processes, polynomials and martingales. Commun. Stat. Stoch. Models 14 (1,2), 335–349 (1998)
46.
go back to reference E. Sousa, Finite difference approximations for a fractional advection diffusion problem. Technical Report 08–26, Departamento de Matematica, Universidade de Coimbra, 2008 E. Sousa, Finite difference approximations for a fractional advection diffusion problem. Technical Report 08–26, Departamento de Matematica, Universidade de Coimbra, 2008
47.
go back to reference J. Spanier, K.B. Oldham, An Atlas of Functions ch. 51, The Bessel K ν (x), Washingtone DC, Hemisphere, 1987 J. Spanier, K.B. Oldham, An Atlas of Functions ch. 51, The Bessel K ν (x), Washingtone DC, Hemisphere, 1987
48.
go back to reference C. Tadjeran, M.M. Meerschaert, H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MathSciNetCrossRefMATH C. Tadjeran, M.M. Meerschaert, H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MathSciNetCrossRefMATH
49.
go back to reference D.Y. Tangman, A.A.I. Peer, N. Rambeerich, M. Bhuruth, Fast simplified approaches to Asian option pricing. J. Comput. Finance 14 (4), 3–36 (2011)CrossRef D.Y. Tangman, A.A.I. Peer, N. Rambeerich, M. Bhuruth, Fast simplified approaches to Asian option pricing. J. Comput. Finance 14 (4), 3–36 (2011)CrossRef
50.
go back to reference I. Wang, J. Wan, P. Forsyth, Robust numerical valuation of European and American options under the CGMY process. J. Comp. Finance 4, 31–70 (2007)CrossRef I. Wang, J. Wan, P. Forsyth, Robust numerical valuation of European and American options under the CGMY process. J. Comp. Finance 4, 31–70 (2007)CrossRef
51.
go back to reference C. Yang, R. Duraiswami, N.A. Gumerov, L. Davis, Improved Fast Gauss Transform and efficient kernel density estimation, in EEE International Conference on Computer Vision, pp. 464–471 (2003) C. Yang, R. Duraiswami, N.A. Gumerov, L. Davis, Improved Fast Gauss Transform and efficient kernel density estimation, in EEE International Conference on Computer Vision, pp. 464–471 (2003)
Metadata
Title
Pseudoparabolic Equations for Various Lévy Models
Author
Andrey Itkin
Copyright Year
2017
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-6792-6_6

Premium Partners