Skip to main content
Top
Published in: Cellulose 6/2021

18-02-2021 | Original Research

Pyrolysis characteristics of cellulosic biomass in the presence of alkali and alkaline-earth-metal (AAEM) oxalates

Authors: Licheng Wang, Yafei Shen

Published in: Cellulose | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pyrolysis characteristics including reaction kinetics and products distribution of cellulose pyrolysis in the presence of AAEM oxalates were preliminarily studied by using the TG and PY-GC/MS analysis. In general, the main mass loss region took place at 300–400 °C and the maximum mass loss temperature was about 380 °C. The activation energy Ea of cellulose pyrolysis (159 kJ/mol) was decreased in the presence of AAEM oxalates (K2C2O4—123 kJ/mol, MgC2O4—151 kJ/mol and CaC2O4—138 kJ/mol). The major pyrolytic components were classified into furans, anhydrosugars, acids, esters, alcohols, aldehydes, pyrans, ketones, hydrocarbons and phenols, etc. The presence of AAEM oxalates promoted the generation of ketones. In particular, K2C2O4 and MgC2O4 showed a high selectivity (relative content: > 30%) on the production of ketones. As a good candidate of MgO, MgC2O4 or MgCO3 has a high potential for both gas upgrading and porous carbon production in biomass pyrolysis.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N (2012) Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim 107:1023–1029CrossRef Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N (2012) Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim 107:1023–1029CrossRef
go back to reference Chen D, Zhou J, Zhang Q (2014) Effects of torrefection on the pyrolysis behavior and bio-oil properties of rice husk by using TG-FTIR and Py-GC/MS. Energy Fuels 28:5857–5863CrossRef Chen D, Zhou J, Zhang Q (2014) Effects of torrefection on the pyrolysis behavior and bio-oil properties of rice husk by using TG-FTIR and Py-GC/MS. Energy Fuels 28:5857–5863CrossRef
go back to reference Chen L, Liao Y, Guo Z, Cao Y, Ma X (2019a) Products distribution and generation pathways of cellulose pyrolysis. J Cleaner Prod 232:1309–1320CrossRef Chen L, Liao Y, Guo Z, Cao Y, Ma X (2019a) Products distribution and generation pathways of cellulose pyrolysis. J Cleaner Prod 232:1309–1320CrossRef
go back to reference Chen W-H, Wang C-W, Ong HC, Show PL, Hsieh T-H (2019b) Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258:116168CrossRef Chen W-H, Wang C-W, Ong HC, Show PL, Hsieh T-H (2019b) Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258:116168CrossRef
go back to reference Chen X, Li S, Liu Z, Chen Y, Yang H, Wang X et al (2019c) Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Bioresour Technol 287:121493PubMedCrossRef Chen X, Li S, Liu Z, Chen Y, Yang H, Wang X et al (2019c) Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Bioresour Technol 287:121493PubMedCrossRef
go back to reference CollardF-X BJ (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemi-celluloses and lignin. Renew Sustain Energy Rev 38:594–608CrossRef CollardF-X BJ (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemi-celluloses and lignin. Renew Sustain Energy Rev 38:594–608CrossRef
go back to reference Dai G, Wang K, Wang G, Wang S (2019) Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation. Combust Flame 208:273–280CrossRef Dai G, Wang K, Wang G, Wang S (2019) Initial pyrolysis mechanism of cellulose revealed by in-situ DRIFT analysis and theoretical calculation. Combust Flame 208:273–280CrossRef
go back to reference French AD (2017) Glucose, not cellobiose, is the repeating unit of celluloseand why that is important. Cellulose 24:4605–4609CrossRef French AD (2017) Glucose, not cellobiose, is the repeating unit of celluloseand why that is important. Cellulose 24:4605–4609CrossRef
go back to reference Hourlier D (2019) Thermal decomposition of calcium oxalate: beyond appearances. J Therm Anal Calorim 136:2221–2229CrossRef Hourlier D (2019) Thermal decomposition of calcium oxalate: beyond appearances. J Therm Anal Calorim 136:2221–2229CrossRef
go back to reference Huo E, Duan D, Lei H, Liu C, Zhang Y, Wu J et al (2020) Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts. Energy 199:117459CrossRef Huo E, Duan D, Lei H, Liu C, Zhang Y, Wu J et al (2020) Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts. Energy 199:117459CrossRef
go back to reference Jung S, Lee S, Park Y-K, Lee KH, Kwon EE (2020) CO2-Mediated catalytic pyrolysis of rice straw for syngas production and power generation. Energy Conver Manage 220:113057CrossRef Jung S, Lee S, Park Y-K, Lee KH, Kwon EE (2020) CO2-Mediated catalytic pyrolysis of rice straw for syngas production and power generation. Energy Conver Manage 220:113057CrossRef
go back to reference Kalogiannis KG, Stefanidis SD, Karakoulia SA, Triantafyllidis KS, Yiannoulakis H, Michailof C, Lappas AA (2018) First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: deoxygenation mechanisms and catalyst deactivation. Appl Catal B Environ 238:346–357CrossRef Kalogiannis KG, Stefanidis SD, Karakoulia SA, Triantafyllidis KS, Yiannoulakis H, Michailof C, Lappas AA (2018) First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: deoxygenation mechanisms and catalyst deactivation. Appl Catal B Environ 238:346–357CrossRef
go back to reference Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energ Rev 57:1126–1140CrossRef Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energ Rev 57:1126–1140CrossRef
go back to reference Kim J, Lee J, Kim K-H, Ok YS, Jeon YJ, Kwon EE (2017) Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium. Appl Therm Eng 110:335–345CrossRef Kim J, Lee J, Kim K-H, Ok YS, Jeon YJ, Kwon EE (2017) Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium. Appl Therm Eng 110:335–345CrossRef
go back to reference Lazdovica K, Liepina L, Kampars V (2016) Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method. Bioresour Technol 207:126–133PubMedCrossRef Lazdovica K, Liepina L, Kampars V (2016) Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method. Bioresour Technol 207:126–133PubMedCrossRef
go back to reference Lee J, Oh J-I, Ok YS, Kwon EE (2017) Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2. Energy 137:510–517CrossRef Lee J, Oh J-I, Ok YS, Kwon EE (2017) Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2. Energy 137:510–517CrossRef
go back to reference Lin Y, Zhang C, Zhang M, Zhang J (2010) Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy Fuels 24:5686–5695CrossRef Lin Y, Zhang C, Zhang M, Zhang J (2010) Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy Fuels 24:5686–5695CrossRef
go back to reference Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623PubMedCrossRef Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623PubMedCrossRef
go back to reference Lu Q, Yang X, Dong C, Zhang Z, Zhang X, Zhu X (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis 92:430–438CrossRef Lu Q, Yang X, Dong C, Zhang Z, Zhang X, Zhu X (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis 92:430–438CrossRef
go back to reference Lu Q, Wu Y, Hu B, Liu J, Liu D, Dong C, Yang Y (2019) Insight into the mechanism of secondary reactions in cellulose pyrolysis: interactions between levoglucosan and acetic acid. Cellulose 26:8279–8290CrossRef Lu Q, Wu Y, Hu B, Liu J, Liu D, Dong C, Yang Y (2019) Insight into the mechanism of secondary reactions in cellulose pyrolysis: interactions between levoglucosan and acetic acid. Cellulose 26:8279–8290CrossRef
go back to reference Ludwinowicz J, Jaroniec M (2015) Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon 82:297–303CrossRef Ludwinowicz J, Jaroniec M (2015) Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon 82:297–303CrossRef
go back to reference Mahadevan R, Adhikari S, Shakya R, Wang K, Dayton D, Lehrich M et al (2016) Effect of alkali and alkaline earth metals on in-situ catalytic fast pyrolysis of lignocellulosic biomass: a microreactor study. Energy Fuels 30:3045–3056CrossRef Mahadevan R, Adhikari S, Shakya R, Wang K, Dayton D, Lehrich M et al (2016) Effect of alkali and alkaline earth metals on in-situ catalytic fast pyrolysis of lignocellulosic biomass: a microreactor study. Energy Fuels 30:3045–3056CrossRef
go back to reference Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473CrossRef Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3:2456–2473CrossRef
go back to reference Senneca O, Cerciello F, Russo C, Wütscher A, Muhler M, Apicella B (2020) Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide. Fuel 271:117656CrossRef Senneca O, Cerciello F, Russo C, Wütscher A, Muhler M, Apicella B (2020) Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide. Fuel 271:117656CrossRef
go back to reference Sevilla M, Ferrero GA, Fuertes AB (2017) One-pot synthesis of biomass-based hierarchical porous carbons with a large porosity development. Chem Mater 29:6900–6907CrossRef Sevilla M, Ferrero GA, Fuertes AB (2017) One-pot synthesis of biomass-based hierarchical porous carbons with a large porosity development. Chem Mater 29:6900–6907CrossRef
go back to reference Sevilla M, Al-Jumialy ASM, Fuertes AB, Mokaya R (2018) Optimization of the pore structure of biomass-derived carbons in relation to their use for CO2 capture at low and high pressure regimes. ACS Appl Mater Interfaces 10:1623–1633PubMedCrossRef Sevilla M, Al-Jumialy ASM, Fuertes AB, Mokaya R (2018) Optimization of the pore structure of biomass-derived carbons in relation to their use for CO2 capture at low and high pressure regimes. ACS Appl Mater Interfaces 10:1623–1633PubMedCrossRef
go back to reference Shen Y (2015) Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J Mater Chem A 3:13114–13188CrossRef Shen Y (2015) Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J Mater Chem A 3:13114–13188CrossRef
go back to reference Shen Y, Yu S, Yuan R, Wang P (2020a) Biomass pyrolysis with alkaline-earth-metal additive for co-production of bio-oil and biochar-based soil amendment. Sci Total Environ 743:140760PubMedCrossRef Shen Y, Yu S, Yuan R, Wang P (2020a) Biomass pyrolysis with alkaline-earth-metal additive for co-production of bio-oil and biochar-based soil amendment. Sci Total Environ 743:140760PubMedCrossRef
go back to reference Shen Y, Zhang N, Zhang S (2020b) Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons. Energy 190:116431CrossRef Shen Y, Zhang N, Zhang S (2020b) Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons. Energy 190:116431CrossRef
go back to reference Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150CrossRef Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150CrossRef
go back to reference Trendewicz A, Evans R, Dutta A, Sykes R, Carpenter D, Braun R (2015) Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass Bioenergy 74:15–25CrossRef Trendewicz A, Evans R, Dutta A, Sykes R, Carpenter D, Braun R (2015) Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass Bioenergy 74:15–25CrossRef
go back to reference Usino DO, Supriyanto YP, Pettersson A, Richards T (2020) Influence of temperature and time on initial pyrolysis of cellulose and xylan. J Anal Appl Pyrolysis 147:104782CrossRef Usino DO, Supriyanto YP, Pettersson A, Richards T (2020) Influence of temperature and time on initial pyrolysis of cellulose and xylan. J Anal Appl Pyrolysis 147:104782CrossRef
go back to reference Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energ Combust Sci 62:33–66CrossRef Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energ Combust Sci 62:33–66CrossRef
go back to reference Wang J, Yang Q, Yang W, Pei H, Zhang L, Zhang T et al (2018) Adsorptive catalysis of hierarchical porous heteroatom-doped biomass: from recovered heavy metal to efficient pollutant decontamination. J Mater Chem A 6:16690–16698CrossRef Wang J, Yang Q, Yang W, Pei H, Zhang L, Zhang T et al (2018) Adsorptive catalysis of hierarchical porous heteroatom-doped biomass: from recovered heavy metal to efficient pollutant decontamination. J Mater Chem A 6:16690–16698CrossRef
go back to reference Yang X, Fu Z, Han D, Zhao Y, Li R, Wu Y (2020) Unveiling the pyrolysis mechanisms of cellulose: experimental and theoretical studies. Renew Energy 147:1120–1130CrossRef Yang X, Fu Z, Han D, Zhao Y, Li R, Wu Y (2020) Unveiling the pyrolysis mechanisms of cellulose: experimental and theoretical studies. Renew Energy 147:1120–1130CrossRef
go back to reference Yuan R, Shen Y (2019a) Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production. Bioresour Technol 293:122076PubMedCrossRef Yuan R, Shen Y (2019a) Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production. Bioresour Technol 293:122076PubMedCrossRef
go back to reference Yuan R, Shen Y (2019b) Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues. Waste Manage 87:86–96CrossRef Yuan R, Shen Y (2019b) Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues. Waste Manage 87:86–96CrossRef
go back to reference Yuan Z, Xu Z, Zhang D, Chen W, Huang Y, Zhang T et al (2018) Mesoporous activated carbons synthesized by pyrolysis of waste polyester textiles mixed with Mg-containing compounds and their Cr(VI) adsorption. Colloids Surf A 549:86–93CrossRef Yuan Z, Xu Z, Zhang D, Chen W, Huang Y, Zhang T et al (2018) Mesoporous activated carbons synthesized by pyrolysis of waste polyester textiles mixed with Mg-containing compounds and their Cr(VI) adsorption. Colloids Surf A 549:86–93CrossRef
go back to reference Zhang J, Ren N, Bai J (2006) Non-isothermal decomposition reaction kinetics of the magnesium oxalate dehydrate. Chin J Chem 24:360–364CrossRef Zhang J, Ren N, Bai J (2006) Non-isothermal decomposition reaction kinetics of the magnesium oxalate dehydrate. Chin J Chem 24:360–364CrossRef
go back to reference Zhang H, Xiao R, Jin B et al (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262PubMedCrossRef Zhang H, Xiao R, Jin B et al (2013) Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst. Bioresour Technol 140:256–262PubMedCrossRef
go back to reference Zhang H, Luo M, Xiao R, Shao S, Jin B, Xiao G, Zhao M, Liang J (2014) Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition(CLD) modified ZSM-5. Bioresour Technol 155:57–62PubMedCrossRef Zhang H, Luo M, Xiao R, Shao S, Jin B, Xiao G, Zhao M, Liang J (2014) Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition(CLD) modified ZSM-5. Bioresour Technol 155:57–62PubMedCrossRef
go back to reference Zhang X, Lei H, Zhu L, Zhu X, Qian M, Yadavalli G et al (2016) Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresour Technol 220:233–238PubMedCrossRef Zhang X, Lei H, Zhu L, Zhu X, Qian M, Yadavalli G et al (2016) Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresour Technol 220:233–238PubMedCrossRef
go back to reference Zhang C, Hu X, Guo H, Wei T, Dong D, Hu G et al (2018) Pyrolysis of poplar, cellulose and lignin: Effects of acidity and alkalinity of the metal oxide catalysts. J Anal Appl Pyrolysis 134:590–605CrossRef Zhang C, Hu X, Guo H, Wei T, Dong D, Hu G et al (2018) Pyrolysis of poplar, cellulose and lignin: Effects of acidity and alkalinity of the metal oxide catalysts. J Anal Appl Pyrolysis 134:590–605CrossRef
go back to reference Zhang Z, Zhang C, Zhang L, Li C, Zhang S, Liu Q, Wang Y, Gholizadeh M, Hu X (2020) Pyrolysis of cellulose with co-feeding of formic or acetic acid. Cellulose 27:4909–4929CrossRef Zhang Z, Zhang C, Zhang L, Li C, Zhang S, Liu Q, Wang Y, Gholizadeh M, Hu X (2020) Pyrolysis of cellulose with co-feeding of formic or acetic acid. Cellulose 27:4909–4929CrossRef
go back to reference Zong P, Jiang Y, Tian Y, Li J, Yuan M, Ji Y et al (2020) Pyrolysis behavior and product distributions of biomass six group components: starch, cellulose, hemicellulose, lignin, protein and oil. Energ Convers Manage 216:112777CrossRef Zong P, Jiang Y, Tian Y, Li J, Yuan M, Ji Y et al (2020) Pyrolysis behavior and product distributions of biomass six group components: starch, cellulose, hemicellulose, lignin, protein and oil. Energ Convers Manage 216:112777CrossRef
Metadata
Title
Pyrolysis characteristics of cellulosic biomass in the presence of alkali and alkaline-earth-metal (AAEM) oxalates
Authors
Licheng Wang
Yafei Shen
Publication date
18-02-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-03756-3

Other articles of this Issue 6/2021

Cellulose 6/2021 Go to the issue