Skip to main content
Top

2020 | OriginalPaper | Chapter

27. PZT and Lead-Free Piezo Ceramics for Aerospace and Energy Applications

Authors : P. K. Panda, B. Sahoo

Published in: Handbook of Advanced Ceramics and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lead zirconate titanate (PZT)-based piezoelectric materials are well known for their superb piezoelectric properties, which makes them ideally suited for various applications ranging from household gas lighter to sensors and actuators in high-end aerospace applications such as vibration control of airplane wings, flutter control, structural health monitoring of airplane structures, vibration energy harvesting etc. Recently, R&D on lead-free piezoelectric materials are gaining attention due to toxic effect of lead-based PZTs. Lead-free materials of comparable piezoelectric properties to PZT have been developed; however, performance of these materials in multilayered device form is yet to be established. In recent years, research on renewable energy/clean energy is in great demand to control pollution level. Piezoelectric material-based energy harvesters are quite promising due to use of unused vibration energy. Power harvested from such systems in micro- to milliwatt level is very much suitable for charging mobile phone, functioning of TV remote, working of low-wattage sensors, etc. In this chapter, preparation of PZT- and BZT-based lead-free piezo materials; fabrication of multilayered devices (bimorphs, multilayered stacks, etc.) using tape casting technique; characterization of ferroelectric, piezoelectric, and dielectric properties; applications such as vibration control and energy harvesting especially aimed at aerospace sector have been described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jaffe B, Jaffe H, Cook WR (1971) Piezoelectric ceramics. Academic, London Jaffe B, Jaffe H, Cook WR (1971) Piezoelectric ceramics. Academic, London
2.
go back to reference Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818CrossRef Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818CrossRef
3.
go back to reference Singh DJ, Ghita M, Fornari M, Halilov SV (2006) Role of A-site and B-site ions in perovskite ferroelectricity. Ferroelectrics 338:73–79CrossRef Singh DJ, Ghita M, Fornari M, Halilov SV (2006) Role of A-site and B-site ions in perovskite ferroelectricity. Ferroelectrics 338:73–79CrossRef
4.
go back to reference Kinase W, Harada K (2006) Ferroelectricity of perovskite type crystal ABO3 for the various A ions. Ferroelectrics 333:21–26CrossRef Kinase W, Harada K (2006) Ferroelectricity of perovskite type crystal ABO3 for the various A ions. Ferroelectrics 333:21–26CrossRef
5.
go back to reference Sahoo B, Jaleel VA, Panda PK (2006) Development of PZT powders by wet chemical method and fabrication of multilayered stacks/actuators. Mater Sci Eng B 126:80–85CrossRef Sahoo B, Jaleel VA, Panda PK (2006) Development of PZT powders by wet chemical method and fabrication of multilayered stacks/actuators. Mater Sci Eng B 126:80–85CrossRef
6.
go back to reference Qiu W, Hng HH (2002) Effects of dopants on the microstructure and properties of PZT ceramics. Mater Chem Phys 75:151–156CrossRef Qiu W, Hng HH (2002) Effects of dopants on the microstructure and properties of PZT ceramics. Mater Chem Phys 75:151–156CrossRef
7.
go back to reference Garg A, Agrawal DC (2001) Effect of rare earth (Er, Gd, Eu, Nd, and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics. Mater Sci Eng B 86:134–143CrossRef Garg A, Agrawal DC (2001) Effect of rare earth (Er, Gd, Eu, Nd, and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics. Mater Sci Eng B 86:134–143CrossRef
8.
go back to reference Sahoo B, Panda PK (2013) Effect of lanthanum, neodymium on piezoelectric, dielectric and ferroelectric properties of PZT. J Adv Ceram 2:37–41CrossRef Sahoo B, Panda PK (2013) Effect of lanthanum, neodymium on piezoelectric, dielectric and ferroelectric properties of PZT. J Adv Ceram 2:37–41CrossRef
9.
go back to reference Chandrashekhara K, Agarwal AN (1993) Active vibration control of laminated composite plates using piezoelectric devices: a finite element approach. J Intell Mater Syst Struct 4:496–508CrossRef Chandrashekhara K, Agarwal AN (1993) Active vibration control of laminated composite plates using piezoelectric devices: a finite element approach. J Intell Mater Syst Struct 4:496–508CrossRef
10.
go back to reference Cattafesta LN, Garg S, Shukla D (2001) Development of piezoelectric actuators for active flow control. AIAA J 39:1562–1568CrossRef Cattafesta LN, Garg S, Shukla D (2001) Development of piezoelectric actuators for active flow control. AIAA J 39:1562–1568CrossRef
11.
go back to reference Panda PK, Sahoo B, Chandraiah M et al (2015) Piezoelectric energy harvesting using PZT bimorphs and multilayered stacks. J Electron Mater 44:4349–4353CrossRef Panda PK, Sahoo B, Chandraiah M et al (2015) Piezoelectric energy harvesting using PZT bimorphs and multilayered stacks. J Electron Mater 44:4349–4353CrossRef
12.
go back to reference Howells CA (2009) Piezoelectric energy harvesting. Energ Convers Manage 50:1847–1850CrossRef Howells CA (2009) Piezoelectric energy harvesting. Energ Convers Manage 50:1847–1850CrossRef
13.
go back to reference Bhalla AS, Guo R, Alberta EF (2002) Some comments on the morphotropic phase boundary and property diagrams in ferroelectric relaxor systems. Mater Lett 54:264–268CrossRef Bhalla AS, Guo R, Alberta EF (2002) Some comments on the morphotropic phase boundary and property diagrams in ferroelectric relaxor systems. Mater Lett 54:264–268CrossRef
14.
go back to reference Isupov VA (1980) Reasons for discrepancies relating to the range of coexistence of phases in lead zirconate–titanate solid solutions. Sov Phys Solid State 22:98–101 Isupov VA (1980) Reasons for discrepancies relating to the range of coexistence of phases in lead zirconate–titanate solid solutions. Sov Phys Solid State 22:98–101
15.
go back to reference Kala T (1983) Contribution to the study of tetragonal and rhombohedral phase coexistence in the PbZrO3–PbTiO3 system. Phys Status Solidi 78:277–282CrossRef Kala T (1983) Contribution to the study of tetragonal and rhombohedral phase coexistence in the PbZrO3–PbTiO3 system. Phys Status Solidi 78:277–282CrossRef
16.
go back to reference Kulcsar F (1959) Electromechanical properties of lead titanate zirconate ceramics with lead partially replaced by calcium or strontium. J Am Ceram Soc 42:49–51CrossRef Kulcsar F (1959) Electromechanical properties of lead titanate zirconate ceramics with lead partially replaced by calcium or strontium. J Am Ceram Soc 42:49–51CrossRef
17.
go back to reference Cerqueira M, Nasar RS, Longo E et al (1997) Piezoelectric behavior of PZT doped with calcium: a combined experimental and theoretical study. J Mater Sci 32:2381–2386CrossRef Cerqueira M, Nasar RS, Longo E et al (1997) Piezoelectric behavior of PZT doped with calcium: a combined experimental and theoretical study. J Mater Sci 32:2381–2386CrossRef
18.
go back to reference Bernard J (1971) Piezoelectric ceramics, 1st edn. Academic, London Bernard J (1971) Piezoelectric ceramics, 1st edn. Academic, London
19.
go back to reference Kanai H, Furukawa O, Abe H, Yamashita Y (1994) Dielectric properties of (Pb1-xXx) (Zr0.7Ti0.3)O3 (X= Ca, Sr, Ba) ceramics. J Am Ceram Soc 77:2620–2624CrossRef Kanai H, Furukawa O, Abe H, Yamashita Y (1994) Dielectric properties of (Pb1-xXx) (Zr0.7Ti0.3)O3 (X= Ca, Sr, Ba) ceramics. J Am Ceram Soc 77:2620–2624CrossRef
20.
go back to reference Markowski K, Park SE, Yoshikawa S, Cross LE (1996) Effect of compositional variations in the lead lanthanum zirconate stannate titanate system on electrical properties. J Am Ceram Soc 79:3297–3304CrossRef Markowski K, Park SE, Yoshikawa S, Cross LE (1996) Effect of compositional variations in the lead lanthanum zirconate stannate titanate system on electrical properties. J Am Ceram Soc 79:3297–3304CrossRef
21.
go back to reference Hng QW, Hoon H (2002) Effects of dopants on the microstructure and properties of PZT ceramics. Mater Chem Phys 75:151–156CrossRef Hng QW, Hoon H (2002) Effects of dopants on the microstructure and properties of PZT ceramics. Mater Chem Phys 75:151–156CrossRef
22.
go back to reference Xiang PH, Zhong N, Dong XL, Liang RH, Yang H, Feng CD (2004) Fabrication and dielectric properties of lanthanum-modified lead zirconate titanate using co-precipitation powder coating. Mater Lett 58:2675–2678CrossRef Xiang PH, Zhong N, Dong XL, Liang RH, Yang H, Feng CD (2004) Fabrication and dielectric properties of lanthanum-modified lead zirconate titanate using co-precipitation powder coating. Mater Lett 58:2675–2678CrossRef
23.
go back to reference Dai X, Digiovanni A, Viehland D (1993) Dielectric properties of tetragonal lanthanum modified lead zirconate titanate ceramics. J Appl Phys 74:3399–3405CrossRef Dai X, Digiovanni A, Viehland D (1993) Dielectric properties of tetragonal lanthanum modified lead zirconate titanate ceramics. J Appl Phys 74:3399–3405CrossRef
24.
go back to reference Stashans A, Maldonado F (2007) A quantum mechanical study of La-doped Pb(Zr,Ti)O3. Phys B Condens Matter 392:237–241CrossRef Stashans A, Maldonado F (2007) A quantum mechanical study of La-doped Pb(Zr,Ti)O3. Phys B Condens Matter 392:237–241CrossRef
25.
go back to reference Sharma S, Singh R, Goel TC, Chandra S (2006) Synthesis, structural and electrical properties of La modified PZT system. Comput Mater Sci 37:86–89CrossRef Sharma S, Singh R, Goel TC, Chandra S (2006) Synthesis, structural and electrical properties of La modified PZT system. Comput Mater Sci 37:86–89CrossRef
26.
go back to reference Mohidden MA, Kumar A, Yadav KL (2007) Effect of Nd doping on structural, dielectric and thermodynamic properties of PZT (65/35) ceramics. Phys B Condens Matter 395:1–9CrossRef Mohidden MA, Kumar A, Yadav KL (2007) Effect of Nd doping on structural, dielectric and thermodynamic properties of PZT (65/35) ceramics. Phys B Condens Matter 395:1–9CrossRef
27.
go back to reference Juneja JK, Prakash C, Thakur OP, Sharma TP (2002) Dielectric and piezoelectric properties of PZT substituted with samarium. Ferroelectr Lett 29:11–16CrossRef Juneja JK, Prakash C, Thakur OP, Sharma TP (2002) Dielectric and piezoelectric properties of PZT substituted with samarium. Ferroelectr Lett 29:11–16CrossRef
28.
go back to reference Khazanchi R, Sharma S, Goel TC (2005) Effect of rare earth europium substitution on the microstructure, dielectric, ferroelectric and pyroelectric properties of PZT ceramics. J Electroceram 14:113–118CrossRef Khazanchi R, Sharma S, Goel TC (2005) Effect of rare earth europium substitution on the microstructure, dielectric, ferroelectric and pyroelectric properties of PZT ceramics. J Electroceram 14:113–118CrossRef
29.
go back to reference Pereira M, Peixoto AG, Gomes MJM (2001) Effect of Nb doping on microstructural and electrical properties of the PZT ceramics. J Eur Ceram Soc 21:1353–1356CrossRef Pereira M, Peixoto AG, Gomes MJM (2001) Effect of Nb doping on microstructural and electrical properties of the PZT ceramics. J Eur Ceram Soc 21:1353–1356CrossRef
30.
go back to reference Chu SY, Chen TY, Tsai IT (2003) Effects of sintering temperature on the dielectric and piezoelectric properties of Nb-Doped PZT ceramics and their applications. Integr Ferroelectr 58:1293–1303CrossRef Chu SY, Chen TY, Tsai IT (2003) Effects of sintering temperature on the dielectric and piezoelectric properties of Nb-Doped PZT ceramics and their applications. Integr Ferroelectr 58:1293–1303CrossRef
31.
go back to reference Yadav KL, Choudhary RNP (2005) Piezoelectric properties of modified PZT ceramics. Ferroelectrics 325:87–94CrossRef Yadav KL, Choudhary RNP (2005) Piezoelectric properties of modified PZT ceramics. Ferroelectrics 325:87–94CrossRef
32.
go back to reference Weston TB, Webster AH, Nanara VMM (1969) Lead zirconate-Lead titanate piezoelectric ceramic with Iron oxide additions. J Am Ceram Soc 52:253–257CrossRef Weston TB, Webster AH, Nanara VMM (1969) Lead zirconate-Lead titanate piezoelectric ceramic with Iron oxide additions. J Am Ceram Soc 52:253–257CrossRef
33.
go back to reference Lee DC (1970) Sintering Sc and Nb modified Lead zirconate titanate. M.S. thesis, University of California, Berkeley, p 35 Lee DC (1970) Sintering Sc and Nb modified Lead zirconate titanate. M.S. thesis, University of California, Berkeley, p 35
34.
go back to reference Tan Q, Xu Z, Li JF, Viehland D (1996) Influence of lower valent A-site modifications on the structure property relations of lead zirconate titanate. J Appl Phys 80:5866–5874CrossRef Tan Q, Xu Z, Li JF, Viehland D (1996) Influence of lower valent A-site modifications on the structure property relations of lead zirconate titanate. J Appl Phys 80:5866–5874CrossRef
35.
go back to reference Choudhary RNP, Mal J (2002) Diffuse phase transition in Cs-modified PLZT ferroelectrics. Mater Sci Eng B 90:1–6CrossRef Choudhary RNP, Mal J (2002) Diffuse phase transition in Cs-modified PLZT ferroelectrics. Mater Sci Eng B 90:1–6CrossRef
36.
go back to reference Boucher E, Guiffard B, Lebrun L, Guyomar D (2006) Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn and (Mn, F) doped lead zirconate titanate ceramics. Ceram Int 32:479–485CrossRef Boucher E, Guiffard B, Lebrun L, Guyomar D (2006) Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn and (Mn, F) doped lead zirconate titanate ceramics. Ceram Int 32:479–485CrossRef
37.
go back to reference Abdessalerm N, Boutarfaia A (2007) Effect of composition on the electromechanical properties of Pb0.9[(Zrx Ti0.9-x) (Cr1/5, Zn1/5, Sb1/5) 0.1]O3 ceramics. Ceram Int 33:293–296CrossRef Abdessalerm N, Boutarfaia A (2007) Effect of composition on the electromechanical properties of Pb0.9[(Zrx Ti0.9-x) (Cr1/5, Zn1/5, Sb1/5) 0.1]O3 ceramics. Ceram Int 33:293–296CrossRef
38.
go back to reference Singh V, Kumar HH, Kharat DK, Hait S, Kulkarni MP (2006) Effect of lanthanum substitution on ferroelectric properties of niobium doped PZT ceramics. Mater Lett 60:2964–2968CrossRef Singh V, Kumar HH, Kharat DK, Hait S, Kulkarni MP (2006) Effect of lanthanum substitution on ferroelectric properties of niobium doped PZT ceramics. Mater Lett 60:2964–2968CrossRef
39.
go back to reference Banerjee A, Bandyopadhyay A, Bose S (2006) Influence of La2O3, SrO, and ZnO addition on PZT. J Am Ceram Soc 89:1594–1600CrossRef Banerjee A, Bandyopadhyay A, Bose S (2006) Influence of La2O3, SrO, and ZnO addition on PZT. J Am Ceram Soc 89:1594–1600CrossRef
40.
go back to reference Park JH, Kim BK, Song KH, Park SJ (1995) Piezoelectric properties of Nb2O5 doped and MnO2-Nb2O5 co-doped Pb(Zr0.53Ti0.47)O3 ceramics. J Mater Sci 6:95–101 Park JH, Kim BK, Song KH, Park SJ (1995) Piezoelectric properties of Nb2O5 doped and MnO2-Nb2O5 co-doped Pb(Zr0.53Ti0.47)O3 ceramics. J Mater Sci 6:95–101
41.
go back to reference Panda PK, Sahoo B (2005) Preparation of pyrochlore-free PMN powder by semi-wet chemical route. Mater Chem Phys 93:231–236CrossRef Panda PK, Sahoo B (2005) Preparation of pyrochlore-free PMN powder by semi-wet chemical route. Mater Chem Phys 93:231–236CrossRef
42.
go back to reference Sahoo B, Panda PK (2007) Dielectric, ferroelectric and piezoelectric properties of (1-x) [Pb0.91La0.09 (Zr0.60Ti0.40) O3] – x [Pb (Mg1/3Nb2/3) O3], 0 ≤ x ≤ 1. J Mater Sci 42:4270–4275CrossRef Sahoo B, Panda PK (2007) Dielectric, ferroelectric and piezoelectric properties of (1-x) [Pb0.91La0.09 (Zr0.60Ti0.40) O3] – x [Pb (Mg1/3Nb2/3) O3], 0 ≤ x ≤ 1. J Mater Sci 42:4270–4275CrossRef
43.
go back to reference Sahoo B, Panda PK (2007) Effect of CeO2 on dielectric, ferroelectric and piezoelectric properties of PMN–PT (67/33) compositions. J Mater Sci 42:4745–4752CrossRef Sahoo B, Panda PK (2007) Effect of CeO2 on dielectric, ferroelectric and piezoelectric properties of PMN–PT (67/33) compositions. J Mater Sci 42:4745–4752CrossRef
44.
go back to reference Sahoo B, Panda PK (2007) Ferroelectric, dielectric and piezoelectric properties of Pb1-x Cex (Zr0.60Ti0.40) O3, 0 ≤ x ≤ 0.08. J Mater Sci 42:9684–9688CrossRef Sahoo B, Panda PK (2007) Ferroelectric, dielectric and piezoelectric properties of Pb1-x Cex (Zr0.60Ti0.40) O3, 0 ≤ x ≤ 0.08. J Mater Sci 42:9684–9688CrossRef
45.
go back to reference Sahoo B, Panda PK (2012) Fabrication of simple and ring-type piezo actuators and their characterization. Smart Mater Res 2012:821847 Sahoo B, Panda PK (2012) Fabrication of simple and ring-type piezo actuators and their characterization. Smart Mater Res 2012:821847
46.
go back to reference Panda PK, Sahoo B, Raja S et al (2012) Electromechanical and dynamic characterization of in-house-fabricated amplified piezo actuator. Smart Mater Res 2012:203625 (8 pages) Panda PK, Sahoo B, Raja S et al (2012) Electromechanical and dynamic characterization of in-house-fabricated amplified piezo actuator. Smart Mater Res 2012:203625 (8 pages)
47.
go back to reference Panda PK, Sahoo B (2014) Development and characterization of PZT multilayered stacks for vibration control. In: Vinoy KJ, Ananthasuresh GK, Pratap R, Krupanidhi SB (eds) Micro and smart device and systems. Springer, India, pp 143–154 Panda PK, Sahoo B (2014) Development and characterization of PZT multilayered stacks for vibration control. In: Vinoy KJ, Ananthasuresh GK, Pratap R, Krupanidhi SB (eds) Micro and smart device and systems. Springer, India, pp 143–154
48.
go back to reference Panda PK (2017) Piezoceramic materials and devices for aerospace applications. In: Eswara Prasad N, Wanhill RJH (eds) Aerospace materials and materials technology, vol 1. Springer Science + Business Media, Singapore, pp 501–518CrossRef Panda PK (2017) Piezoceramic materials and devices for aerospace applications. In: Eswara Prasad N, Wanhill RJH (eds) Aerospace materials and materials technology, vol 1. Springer Science + Business Media, Singapore, pp 501–518CrossRef
49.
go back to reference Panda PK (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44:5049–5062CrossRef Panda PK (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44:5049–5062CrossRef
50.
go back to reference Chandraiah M, Sahoo B, Panda PK (2016) Synthesis and electrical properties of CaO doped BZT lead free piezo ceramics. Ferroelectrics 494:192–199 Chandraiah M, Sahoo B, Panda PK (2016) Synthesis and electrical properties of CaO doped BZT lead free piezo ceramics. Ferroelectrics 494:192–199
51.
go back to reference Chandraiah M, Sahoo B, Panda PK (2015) Effect of MgO on piezoelectric, dielectric and ferroelectric properties of (Ba1-x Mgx) (Ti0.98 Zr0.02) O3 lead-free piezoceramics. J Mater Sci Mater Electron 26:6801–6806CrossRef Chandraiah M, Sahoo B, Panda PK (2015) Effect of MgO on piezoelectric, dielectric and ferroelectric properties of (Ba1-x Mgx) (Ti0.98 Zr0.02) O3 lead-free piezoceramics. J Mater Sci Mater Electron 26:6801–6806CrossRef
52.
go back to reference Chandraiah M, Panda PK (2015) Effect of SrO on piezoelectric, dielectric and ferroelectric properties of (Ba1−x Srx) (Ti0.98 Zr0.02)O3 lead free piezoceramics. J Mater Sci Mater Electron 26:3143–3147CrossRef Chandraiah M, Panda PK (2015) Effect of SrO on piezoelectric, dielectric and ferroelectric properties of (Ba1−x Srx) (Ti0.98 Zr0.02)O3 lead free piezoceramics. J Mater Sci Mater Electron 26:3143–3147CrossRef
53.
go back to reference Chandraiah M, Panda PK (2015) Effect of dopants (A=Mg2+, Ca2+ and Sr2+) on ferroelectric, dielectric and piezoelectric properties of (Ba1-xAx) (Ti0.98Zr0.02) O3 lead-free piezo ceramics. Ceram Int 41:8040–8045CrossRef Chandraiah M, Panda PK (2015) Effect of dopants (A=Mg2+, Ca2+ and Sr2+) on ferroelectric, dielectric and piezoelectric properties of (Ba1-xAx) (Ti0.98Zr0.02) O3 lead-free piezo ceramics. Ceram Int 41:8040–8045CrossRef
54.
go back to reference Panda PK, Sahoo B (2015) PZT to Lead free piezo ceramics: a review. Ferroelectrics 474:128–143CrossRef Panda PK, Sahoo B (2015) PZT to Lead free piezo ceramics: a review. Ferroelectrics 474:128–143CrossRef
55.
go back to reference Kong LB, Ma J (2001) PZT ceramics formed directly from oxides via reactive sintering. Mater Lett 51:95–100CrossRef Kong LB, Ma J (2001) PZT ceramics formed directly from oxides via reactive sintering. Mater Lett 51:95–100CrossRef
56.
go back to reference Lee BW (2004) Synthesis and characterization of compositionally modified PZT by wet chemical preparation from aqueous solution. J Eur Ceram Soc 24:925–929CrossRef Lee BW (2004) Synthesis and characterization of compositionally modified PZT by wet chemical preparation from aqueous solution. J Eur Ceram Soc 24:925–929CrossRef
57.
go back to reference Bezzi F, Costa AL, Piazza D et al (2005) PZT prepared by spray drying: from powder synthesis to electromechanical properties. J Eur Ceram Soc 25:3323–3334CrossRef Bezzi F, Costa AL, Piazza D et al (2005) PZT prepared by spray drying: from powder synthesis to electromechanical properties. J Eur Ceram Soc 25:3323–3334CrossRef
58.
go back to reference Linardos S, Zhang Q, Alcock JR (2006) Preparation of sub-micron PZT particles with the sol–gel technique. J Eur Ceram Soc 26:117–123CrossRef Linardos S, Zhang Q, Alcock JR (2006) Preparation of sub-micron PZT particles with the sol–gel technique. J Eur Ceram Soc 26:117–123CrossRef
59.
go back to reference Maher GH, Hutchins CE, Ross SD (1993) Preparation and characterization of ceramic fine powders produced by the emulsion process. Am Ceram Soc Bull 75:72–76 Maher GH, Hutchins CE, Ross SD (1993) Preparation and characterization of ceramic fine powders produced by the emulsion process. Am Ceram Soc Bull 75:72–76
60.
go back to reference Deng Y, Liu L, Cheng Y et al (2003) Hydrothermal synthesis and characterization of nanocrystalline PZT powders. Mater Lett 57:1675–1678CrossRef Deng Y, Liu L, Cheng Y et al (2003) Hydrothermal synthesis and characterization of nanocrystalline PZT powders. Mater Lett 57:1675–1678CrossRef
61.
go back to reference Rodel J, Jo W, Seifert KTP et al (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177CrossRef Rodel J, Jo W, Seifert KTP et al (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177CrossRef
62.
go back to reference Shrout TR, Zhang SJ (2007) Lead-free piezoceramics: alternatives for PZT? J Electroceram 19:111–124CrossRef Shrout TR, Zhang SJ (2007) Lead-free piezoceramics: alternatives for PZT? J Electroceram 19:111–124CrossRef
63.
go back to reference Ringgaard E, Wurlitzer T (2005) Lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc 25:2701–2706CrossRef Ringgaard E, Wurlitzer T (2005) Lead-free piezoceramics based on alkali niobates. J Eur Ceram Soc 25:2701–2706CrossRef
64.
go back to reference Guo H, Zhang S, Beckman S, Tan X (2013) Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics. J Appl Phys 114:154102CrossRef Guo H, Zhang S, Beckman S, Tan X (2013) Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics. J Appl Phys 114:154102CrossRef
65.
go back to reference Ma C, Tan X (2010) Phase diagram of unpoled lead-free (1−x) (Bi1/2Na1/2)TiO3–xBaTiO3 ceramics. Solid State Commun 150:1497–1500CrossRef Ma C, Tan X (2010) Phase diagram of unpoled lead-free (1−x) (Bi1/2Na1/2)TiO3–xBaTiO3 ceramics. Solid State Commun 150:1497–1500CrossRef
66.
go back to reference Ringgaard E, Wurlitzer T, Wolny WW (2005) Properties of lead-free piezoceramics based on alkali niobates. Ferroelectrics 319:323–333CrossRef Ringgaard E, Wurlitzer T, Wolny WW (2005) Properties of lead-free piezoceramics based on alkali niobates. Ferroelectrics 319:323–333CrossRef
67.
go back to reference Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700CrossRef Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700CrossRef
68.
go back to reference Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602CrossRef Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602CrossRef
69.
go back to reference Chen ZH, Ding JN, Xu JJ et al (2014) Dy2O3 doped (Ba0.85Ca0.15) (Ti0.90Zr0.10)O3 ceramics. Ferroelectrics 460:49–56CrossRef Chen ZH, Ding JN, Xu JJ et al (2014) Dy2O3 doped (Ba0.85Ca0.15) (Ti0.90Zr0.10)O3 ceramics. Ferroelectrics 460:49–56CrossRef
70.
go back to reference Cui Y, Liu X, Jiang M et al (2012) Lead-free (Ba0.85 Ca0.15) (Ti0.9 Zr0.1) O3 –CeO2 ceramics with high piezoelectric coefficient obtained by low sintering temperature. Ceram Int 38:4761–4764CrossRef Cui Y, Liu X, Jiang M et al (2012) Lead-free (Ba0.85 Ca0.15) (Ti0.9 Zr0.1) O3 –CeO2 ceramics with high piezoelectric coefficient obtained by low sintering temperature. Ceram Int 38:4761–4764CrossRef
71.
go back to reference Li W, Hao J, Bai W, Xu R et al (2012) Enhancement of the temperature stabilities in yttrium doped (Ba0.99Ca0.01) (Ti0.98Zr0.02) O3 ceramics. J Alloys Compd 531:46–49CrossRef Li W, Hao J, Bai W, Xu R et al (2012) Enhancement of the temperature stabilities in yttrium doped (Ba0.99Ca0.01) (Ti0.98Zr0.02) O3 ceramics. J Alloys Compd 531:46–49CrossRef
72.
go back to reference Li W, Xu Z, Chu R, Fu P (2012) Effect of Ho doping on piezoelectric properties of BCZT ceramics. Ceram Int 38:4353–4355CrossRef Li W, Xu Z, Chu R, Fu P (2012) Effect of Ho doping on piezoelectric properties of BCZT ceramics. Ceram Int 38:4353–4355CrossRef
73.
go back to reference Cai W, Fu CL, Gao JC, Zhao CX (2011) Dielectric properties and microstructure of Mg doped barium titanate ceramics. Adv Appl Ceram 110:181–185CrossRef Cai W, Fu CL, Gao JC, Zhao CX (2011) Dielectric properties and microstructure of Mg doped barium titanate ceramics. Adv Appl Ceram 110:181–185CrossRef
74.
go back to reference Bera J, Rout SK (2007) Synthesis of (Ba1-x Srx) (Ti0.5 Zr0.5) O3 ceramics and effect of Sr content on room temperature dielectric properties. J Electroceram 18:33–37CrossRef Bera J, Rout SK (2007) Synthesis of (Ba1-x Srx) (Ti0.5 Zr0.5) O3 ceramics and effect of Sr content on room temperature dielectric properties. J Electroceram 18:33–37CrossRef
75.
go back to reference Lallart M, Guyomar D, Jayet Y, Petit L et al (2008) Synchronized switch harvesting applied to self-powered smart systems: piezoactive microgenerators for autonomous wireless receivers. Sensors Actuators A 147:263–272CrossRef Lallart M, Guyomar D, Jayet Y, Petit L et al (2008) Synchronized switch harvesting applied to self-powered smart systems: piezoactive microgenerators for autonomous wireless receivers. Sensors Actuators A 147:263–272CrossRef
76.
go back to reference Harb A (2011) Energy harvesting: state-of-the-art. Renew Energy 36:2641–2654CrossRef Harb A (2011) Energy harvesting: state-of-the-art. Renew Energy 36:2641–2654CrossRef
77.
go back to reference Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP (2001) Vibration-to-electric energy conversion. IEEE Trans VLSI Syst 9:64–76CrossRef Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP (2001) Vibration-to-electric energy conversion. IEEE Trans VLSI Syst 9:64–76CrossRef
78.
go back to reference Kim HW, Priya S, Uchino K, Newnham RE (2005) Piezoelectric energy harvesting under high pre-stressed cyclic vibrations. J Electroceram 15:27–34CrossRef Kim HW, Priya S, Uchino K, Newnham RE (2005) Piezoelectric energy harvesting under high pre-stressed cyclic vibrations. J Electroceram 15:27–34CrossRef
79.
go back to reference Shen D, Park JH, Noh JH et al (2009) Micro machined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sensors Actuators A 154:103–108CrossRef Shen D, Park JH, Noh JH et al (2009) Micro machined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sensors Actuators A 154:103–108CrossRef
80.
go back to reference Siddique ARM, Mahmud S, Heyst SV (2015) A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers Manag 106:728–747CrossRef Siddique ARM, Mahmud S, Heyst SV (2015) A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers Manag 106:728–747CrossRef
81.
go back to reference Shenck NS (1999) A demonstration of useful electric energy generation from piezoceramics in a shoe. M.S. thesis. MIT, Cambridge, MA Shenck NS (1999) A demonstration of useful electric energy generation from piezoceramics in a shoe. M.S. thesis. MIT, Cambridge, MA
82.
go back to reference Kim SB, Park JH, Ahn H, Liu D, Kim DJ (2011) Temperature effects on output power of piezoelectric vibration energy harvesters. Microelectron J 42:988–991CrossRef Kim SB, Park JH, Ahn H, Liu D, Kim DJ (2011) Temperature effects on output power of piezoelectric vibration energy harvesters. Microelectron J 42:988–991CrossRef
83.
go back to reference Okayasu M, Sato D, Sato Y, Konno M, Shiraishi T (2012) A study of the effects of vibration on the electric power generation properties of lead zirconate titanate piezoelectric ceramic. Ceram Int 38:4445–4451CrossRef Okayasu M, Sato D, Sato Y, Konno M, Shiraishi T (2012) A study of the effects of vibration on the electric power generation properties of lead zirconate titanate piezoelectric ceramic. Ceram Int 38:4445–4451CrossRef
84.
go back to reference Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef
85.
go back to reference White NM, Jones PG, Beeby SP (2001) A novel thick-film piezoelectric micro-generator. Smart Mater Struct 10:850–852CrossRef White NM, Jones PG, Beeby SP (2001) A novel thick-film piezoelectric micro-generator. Smart Mater Struct 10:850–852CrossRef
86.
go back to reference Haertling GH (1994) Rainbow ceramics-a new type of ultra-high-displacement actuator. Am Ceram Soc Bull 73:93–96 Haertling GH (1994) Rainbow ceramics-a new type of ultra-high-displacement actuator. Am Ceram Soc Bull 73:93–96
87.
go back to reference Kanayama K, Mase H, Saigoh H (1991) Gap structure multilayer piezoelectric actuator. J Appl Phys 30:2281–2284CrossRef Kanayama K, Mase H, Saigoh H (1991) Gap structure multilayer piezoelectric actuator. J Appl Phys 30:2281–2284CrossRef
88.
go back to reference Uchino K (1993) Ceramic actuators: principles and applications. Mater Res Bull 18:42–48CrossRef Uchino K (1993) Ceramic actuators: principles and applications. Mater Res Bull 18:42–48CrossRef
89.
go back to reference Newnham RE (1998) Functional composites for sensors and actuators: smart materials. The Pennsylvania Academy of Science, Harrisburg Newnham RE (1998) Functional composites for sensors and actuators: smart materials. The Pennsylvania Academy of Science, Harrisburg
90.
go back to reference Wallaschek J (1995) Piezoelectric ultrasonic motors. J Intell Mater Syst Struct 6:71–73CrossRef Wallaschek J (1995) Piezoelectric ultrasonic motors. J Intell Mater Syst Struct 6:71–73CrossRef
91.
go back to reference Uchino K (1994) Piezoelectric actuators/ultrasonic motors. In: Proceedings of the Ninth IEEE International Symposium on Applications of Ferro-electrics. Institute of Electrical and Electronics Engineers, New York, pp 319–324 Uchino K (1994) Piezoelectric actuators/ultrasonic motors. In: Proceedings of the Ninth IEEE International Symposium on Applications of Ferro-electrics. Institute of Electrical and Electronics Engineers, New York, pp 319–324
92.
go back to reference Newnham RE, Bowen LJ, Klicker KA, Cross LE (1980) Composite piezoelectric transducers. Mater Eng 2:93–97 Newnham RE, Bowen LJ, Klicker KA, Cross LE (1980) Composite piezoelectric transducers. Mater Eng 2:93–97
93.
go back to reference Chang SH, Wang HC (1990) A high speed impact actuator using multilayer piezoelectric ceramics. Sens Actuators A 24:239–244CrossRef Chang SH, Wang HC (1990) A high speed impact actuator using multilayer piezoelectric ceramics. Sens Actuators A 24:239–244CrossRef
94.
go back to reference Prasad SE, Waechter DF, Blacow RG, King HW, Yaman Y (2005) Application of piezoelectrics to smart structures. Proceedings of II conference on smart structures and materials, Portugal, Eccomas, Barcelona, pp 1–16 Prasad SE, Waechter DF, Blacow RG, King HW, Yaman Y (2005) Application of piezoelectrics to smart structures. Proceedings of II conference on smart structures and materials, Portugal, Eccomas, Barcelona, pp 1–16
95.
go back to reference Elliot SJ, Nelson PA (1993) Active noise control. IEEE Signal Process Mag 10:12–35CrossRef Elliot SJ, Nelson PA (1993) Active noise control. IEEE Signal Process Mag 10:12–35CrossRef
Metadata
Title
PZT and Lead-Free Piezo Ceramics for Aerospace and Energy Applications
Authors
P. K. Panda
B. Sahoo
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_32

Premium Partners