Skip to main content
Top

2024 | OriginalPaper | Chapter

QMC Strength for Some Random Configurations on the Sphere

Authors : Víctor de la Torre, Jordi Marzo

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A sequence \((X_N)\subset \mathbb {S}^d\) of N-point sets from the d-dimensional sphere has QMC strength \(s^*>d/2\) if it has worst-case error of optimal order, \(N^{-s/d},\) for Sobolev spaces of order s for all \(d/2<s<s^*,\) and the order is not optimal for \(s> s^*.\) In [15] conjectured values of the strength are given for some well known point families in \(\mathbb S^2\) based on numerical results. We study the average QMC strength for some related random configurations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alishashi, K., Zamani, M.S.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20(23) (2015) Alishashi, K., Zamani, M.S.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20(23) (2015)
2.
go back to reference Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge (2010) Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge (2010)
3.
go back to reference Armentano, D., Beltrán, C., Shub, M.: Minimizing the discrete logarithmic energy on the sphere: the role of random polynomials. Trans. Am. Math. Soc. 363(6), 2955–2965 (2011)MathSciNetCrossRef Armentano, D., Beltrán, C., Shub, M.: Minimizing the discrete logarithmic energy on the sphere: the role of random polynomials. Trans. Am. Math. Soc. 363(6), 2955–2965 (2011)MathSciNetCrossRef
4.
go back to reference Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complex. 37, 76–109 (2016)MathSciNetCrossRef Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complex. 37, 76–109 (2016)MathSciNetCrossRef
5.
go back to reference Berman, R.J.: The spherical ensemble and quasi-Monte-Carlo designs. Constr. Approx. (2023) Berman, R.J.: The spherical ensemble and quasi-Monte-Carlo designs. Constr. Approx. (2023)
6.
go back to reference Berman, R.J., Boucksom, S., Nyström, D.W.: Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207, 1–27 (2011)MathSciNetCrossRef Berman, R.J., Boucksom, S., Nyström, D.W.: Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207, 1–27 (2011)MathSciNetCrossRef
7.
go back to reference Bogomolny, E., Bohigas, O., Leboeuf, P.: Distribution of roots of random polynomials. Phys. Rev. Lett. 68, 2726–2729 (1992)MathSciNetCrossRef Bogomolny, E., Bohigas, O., Leboeuf, P.: Distribution of roots of random polynomials. Phys. Rev. Lett. 68, 2726–2729 (1992)MathSciNetCrossRef
8.
go back to reference Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85(5), 639–679 (1996)MathSciNetCrossRef Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85(5), 639–679 (1996)MathSciNetCrossRef
9.
go back to reference Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443–452 (2013)MathSciNetCrossRef Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443–452 (2013)MathSciNetCrossRef
10.
go back to reference Borda, B., Grabner, P., Matzke, R.W.: Riesz energy, \(L^2\) discrepancy, and Optimal transport of determinantal point processes on the sphere and the flat torus (2023). arXiv:2308.06216 Borda, B., Grabner, P., Matzke, R.W.: Riesz energy, \(L^2\) discrepancy, and Optimal transport of determinantal point processes on the sphere and the flat torus (2023). arXiv:​2308.​06216
11.
go back to reference Borodachov, S., Hardin, D., Saff, E.: Discrete Energy on Rectifiable Sets. Springer, New York (2019)CrossRef Borodachov, S., Hardin, D., Saff, E.: Discrete Energy on Rectifiable Sets. Springer, New York (2019)CrossRef
12.
go back to reference Brandolini, L., Choirat, C., Colzani, L., Gigante, G., Seri, R., Travaglini, G.: Quadrature rules and distribution of points on manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 889–923 (2014) Brandolini, L., Choirat, C., Colzani, L., Gigante, G., Seri, R., Travaglini, G.: Quadrature rules and distribution of points on manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 889–923 (2014)
13.
go back to reference Brauchart, J.S., Dick, J.: A characterization of Sobolev spaces on the sphere and an extension of Stolarsky’s invariance principle to arbitrary smoothness. Constr. Approx. 38(3), 397–445 (2013)MathSciNetCrossRef Brauchart, J.S., Dick, J.: A characterization of Sobolev spaces on the sphere and an extension of Stolarsky’s invariance principle to arbitrary smoothness. Constr. Approx. 38(3), 397–445 (2013)MathSciNetCrossRef
14.
go back to reference Brauchart, J.S., Hesse, K.: Numerical integration over spheres of arbitrary dimension. Constr. Approx. 25(1), 41–71 (2007)MathSciNetCrossRef Brauchart, J.S., Hesse, K.: Numerical integration over spheres of arbitrary dimension. Constr. Approx. 25(1), 41–71 (2007)MathSciNetCrossRef
15.
go back to reference Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC designs: optimal order quasi Monte Carlo integration schemes on the sphere. Math. Comput. 83(290), 2821–2851 (2014)MathSciNetCrossRef Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC designs: optimal order quasi Monte Carlo integration schemes on the sphere. Math. Comput. 83(290), 2821–2851 (2014)MathSciNetCrossRef
16.
go back to reference Brauchart, J.S., Grabner, P.J., Kusner, W., Ziefle, J.: Hyperuniform point sets on the sphere: probabilistic aspects. Monatsh. Math. 192, 763–781 (2020)MathSciNetCrossRef Brauchart, J.S., Grabner, P.J., Kusner, W., Ziefle, J.: Hyperuniform point sets on the sphere: probabilistic aspects. Monatsh. Math. 192, 763–781 (2020)MathSciNetCrossRef
19.
go back to reference Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. II. McGraw-Hill Book Company Inc, New York-Toronto-London (1954) Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. II. McGraw-Hill Book Company Inc, New York-Toronto-London (1954)
20.
go back to reference Hesse, K.: A lower bound for the worst-case cubature error on spheres of arbitrary dimen-sion. Numer. Math. 103(3), 413–433 (2006)MathSciNetCrossRef Hesse, K.: A lower bound for the worst-case cubature error on spheres of arbitrary dimen-sion. Numer. Math. 103(3), 413–433 (2006)MathSciNetCrossRef
21.
go back to reference Hesse, K., Sloan, I.H.: Optimal lower bounds for cubature error on the sphere \(\mathbb{S} ^2\). J. Complex. 21(6), 790–803 (2005)CrossRef Hesse, K., Sloan, I.H.: Optimal lower bounds for cubature error on the sphere \(\mathbb{S} ^2\). J. Complex. 21(6), 790–803 (2005)CrossRef
22.
go back to reference Hirao, M.: QMC designs and determinantal point processes. In: Monte Carlo and quasi-Monte Carlo methods. Springer Proceedings in Mathematics and Statistics, vol. 241, pp. 331–343. Springer, Cham (2018) Hirao, M.: QMC designs and determinantal point processes. In: Monte Carlo and quasi-Monte Carlo methods. Springer Proceedings in Mathematics and Statistics, vol. 241, pp. 331–343. Springer, Cham (2018)
23.
go back to reference Ben Hough, J., Krishnapur, M., Peres, Y., Virág, V.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence, RI (2009) Ben Hough, J., Krishnapur, M., Peres, Y., Virág, V.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence, RI (2009)
24.
25.
26.
go back to reference Marzo, J., Ortega-Cerdà, J.: Equidistribution of the Fekete points on the sphere. Constr. Approx. 32(3), 513–521 (2010)MathSciNetCrossRef Marzo, J., Ortega-Cerdà, J.: Equidistribution of the Fekete points on the sphere. Constr. Approx. 32(3), 513–521 (2010)MathSciNetCrossRef
27.
go back to reference Pemantle, R., Peres, Y.: Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures. Comb. Probab. Comput. 23(1), 140–160 (2014)MathSciNetCrossRef Pemantle, R., Peres, Y.: Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures. Comb. Probab. Comput. 23(1), 140–160 (2014)MathSciNetCrossRef
28.
go back to reference Reimer, M.: Multivariate Polynomial Approximation, vol. 144. Springer (2003) Reimer, M.: Multivariate Polynomial Approximation, vol. 144. Springer (2003)
29.
go back to reference Sloan, I.H., Womersley, R.S.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001)MathSciNetCrossRef Sloan, I.H., Womersley, R.S.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001)MathSciNetCrossRef
30.
go back to reference Smale, S., Shub, M.: Complexity of Bézout’s theorem III. Condition number and packing. J. Complex. 9(1), 4–14 (1993), Festschrift for Joseph F. Traub, Part I Smale, S., Shub, M.: Complexity of Bézout’s theorem III. Condition number and packing. J. Complex. 9(1), 4–14 (1993), Festschrift for Joseph F. Traub, Part I
31.
go back to reference Szegö, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Colloquium Publications (1939) Szegö, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Colloquium Publications (1939)
Metadata
Title
QMC Strength for Some Random Configurations on the Sphere
Authors
Víctor de la Torre
Jordi Marzo
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_31

Premium Partner