Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

04-04-2019 | Issue 2/2020

Mobile Networks and Applications 2/2020

QoS Prediction for Service Recommendation with Deep Feature Learning in Edge Computing Environment

Journal:
Mobile Networks and Applications > Issue 2/2020
Authors:
Yuyu Yin, Lu Chen, Yueshen Xu, Jian Wan, He Zhang, Zhida Mai
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Along with the popularity of intelligent services and mobile services, service recommendation has become a key task, especially the task based on quality-of-service (QoS) in edge computing environment. Most existing service recommendation methods have some serious defects, and cannot be directly adopted in edge computing environment. For example, most of existing methods cannot learn deep features of users or services, but in edge computing environment, there are a variety of devices with different configurations and different functions, and it is necessary to learn deep features behind those complex devices. In order to fully utilize hidden features, this paper proposes a new matrix factorization (MF) model with deep features learning, which integrates a convolutional neural network (CNN). The proposed mode is named Joint CNN-MF (JCM). JCM is capable of using the learned deep latent features of neighbors to infer the features of a user or a service. Meanwhile, to improve the accuracy of neighbors selection, the proposed model contains a novel similarity computation method. CNN learns the neighbors features, forms a feature matrix and infers the features of the target user or target service. We conducted experiments on a real-world service dataset under a batch of cases of data densities, to reflect the complex invocation cases in edge computing environment. The experimental results verify that compared to counterpart methods, our method can consistently achieve higher QoS prediction results.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2020

Mobile Networks and Applications 2/2020 Go to the issue