Skip to main content
Top
Published in: Wireless Networks 7/2020

16-06-2020

QoS provisioning in energy-efficient cooperative networks with power assignment and relay deployment planning

Authors: Jane-Hwa Huang, Sz-Yan Hsu

Published in: Wireless Networks | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The cooperative network is an energy-efficient technology to provide ubiquitous broadband access and quality-of-service (QoS). This paper investigates the tradeoffs among QoS, capacity, and power consumption in the cooperative networks. By adaptively selecting among the direct, relay, and cooperative transmission (TX) modes for users, we can enhance the capacity with lower transmission power. Furthermore, we determine the proper relay location and transmission powers of base station (BS) and relay station, so that more users can exploit the low-power two-hop TX modes to enhance the capacity and reduce the delay. In the real networks, if the packet queue is empty, the BS can be idle without sending (to save energy). Hence, we also properly increase the link capacity and idle probability to further reduce power consumption. We develop an analytical model to evaluate the delay, variance, capacity, idle probability, and actual power consumption in unsaturated traffic conditions. Then, we apply an optimization approach to analytically determine the optimal relay location and transmission powers, aiming to maximize the overall energy efficiency (EE) subject to the delay requirements. Numerical results show that the adaptive TX-mode selection scheme along with the joint power assignment and relay deployment planning can significantly enhance the capacity and reduce the power consumption. Then, the goal of QoS support can be achieved with higher EE.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang, R., Qi, C., Li, Y., Ruan, Y., Wang, C.-X., & Zhang, H. (2019). Towards energy-efficient underlaid device-to-device communications: A joint resource management approach. IEEE Access, 7, 31385–31396.CrossRef Zhang, R., Qi, C., Li, Y., Ruan, Y., Wang, C.-X., & Zhang, H. (2019). Towards energy-efficient underlaid device-to-device communications: A joint resource management approach. IEEE Access, 7, 31385–31396.CrossRef
2.
go back to reference Ahmed, E., & Gharavi, H. (2018). Cooperative vehicular networking: A survey. IEEE Transactions on Intelligent Transportation Systems, 96, 996–1014.CrossRef Ahmed, E., & Gharavi, H. (2018). Cooperative vehicular networking: A survey. IEEE Transactions on Intelligent Transportation Systems, 96, 996–1014.CrossRef
3.
go back to reference Huang, J., Gharavi, H., Yan, H., & Xing, C.-C. (2017). Network coding in relay-based device-to-device communications. IEEE Network, 31, 102–107.CrossRef Huang, J., Gharavi, H., Yan, H., & Xing, C.-C. (2017). Network coding in relay-based device-to-device communications. IEEE Network, 31, 102–107.CrossRef
4.
go back to reference Vannithamby, R., & Talwar, S. (Eds.). (2017). Towards 5G: Applications, requirements and candidate technologies. New York: Wiley. Vannithamby, R., & Talwar, S. (Eds.). (2017). Towards 5G: Applications, requirements and candidate technologies. New York: Wiley.
5.
go back to reference Feng, D., Jiang, C., Lim, G., Jr Cimini, L. J., Feng, G., & Li, G. Y. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys and Tutorials, 15(1), 167–178. First Quarter.CrossRef Feng, D., Jiang, C., Lim, G., Jr Cimini, L. J., Feng, G., & Li, G. Y. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys and Tutorials, 15(1), 167–178. First Quarter.CrossRef
6.
go back to reference Li, L., Dong, C., Wang, L., & Hanzo, L. (2016). Spectral-efficient bidirectional decode-and-forward relaying for full-duplex communication. IEEE Transactions on Vehicular Technology, 65(9), 7010–7020.CrossRef Li, L., Dong, C., Wang, L., & Hanzo, L. (2016). Spectral-efficient bidirectional decode-and-forward relaying for full-duplex communication. IEEE Transactions on Vehicular Technology, 65(9), 7010–7020.CrossRef
7.
go back to reference Ding, Z., Xing, S., Yan, F., & Shen, L. (2019). Impact of optimal hop distance on the network lifetime for wireless sensor networks with QoS requirements. IEEE Communications Letters, 23(3), 534–537.CrossRef Ding, Z., Xing, S., Yan, F., & Shen, L. (2019). Impact of optimal hop distance on the network lifetime for wireless sensor networks with QoS requirements. IEEE Communications Letters, 23(3), 534–537.CrossRef
8.
go back to reference Huang, J.-H., Wang, L.-C., Chang, C.-J., & Wen-Shan, S. (2010). Design of optimal relay locations in two-hop cellular systems. ACM/Springer Wireless Networks, 16(8), 2179–2189.CrossRef Huang, J.-H., Wang, L.-C., Chang, C.-J., & Wen-Shan, S. (2010). Design of optimal relay locations in two-hop cellular systems. ACM/Springer Wireless Networks, 16(8), 2179–2189.CrossRef
9.
go back to reference Chang, C.-Y., Chang, C.-T., Wang, T.-C., & Li, M.-H. (2015). Throughput-enhanced relay placement mechanism in WiMAX 802.16j multihop relay networks. IEEE Systems Journal, 9(3), 728–742.CrossRef Chang, C.-Y., Chang, C.-T., Wang, T.-C., & Li, M.-H. (2015). Throughput-enhanced relay placement mechanism in WiMAX 802.16j multihop relay networks. IEEE Systems Journal, 9(3), 728–742.CrossRef
10.
go back to reference Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef
11.
go back to reference Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.CrossRef Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.CrossRef
12.
go back to reference Chu, M., He, B., Liao, X., Gao, Z., & Leung, V. C. M. (2018). On the design of power splitting relays with interference alignment. IEEE Transactions on Communications, 66(4), 1411–1424.CrossRef Chu, M., He, B., Liao, X., Gao, Z., & Leung, V. C. M. (2018). On the design of power splitting relays with interference alignment. IEEE Transactions on Communications, 66(4), 1411–1424.CrossRef
13.
go back to reference Ng, D. W. K., & Schober, R. (2010). Cross-layer scheduling for OFDMA amplify-and-forward relay networks. IEEE Transactions on Vehicular Technology, 59(3), 1443–1458.CrossRef Ng, D. W. K., & Schober, R. (2010). Cross-layer scheduling for OFDMA amplify-and-forward relay networks. IEEE Transactions on Vehicular Technology, 59(3), 1443–1458.CrossRef
14.
go back to reference Zappone, A., Atapattu, S., Renzo, M. D., Evans, J. S., & Debbah, M. (2018). Energy-efficient relay assignment and power control in multi-user and multi-relay networks. IEEE Wireless Communications Letters, 7(6), 1070–1073.CrossRef Zappone, A., Atapattu, S., Renzo, M. D., Evans, J. S., & Debbah, M. (2018). Energy-efficient relay assignment and power control in multi-user and multi-relay networks. IEEE Wireless Communications Letters, 7(6), 1070–1073.CrossRef
15.
go back to reference Atapattu, S., Dharmawansa, P., Di Renzo, M., Tellambura, C., & Evans, J. S. (2019). Multi-user relay selection for full-duplex radio. IEEE Transactions on Communications, 67(2), 955–972.CrossRef Atapattu, S., Dharmawansa, P., Di Renzo, M., Tellambura, C., & Evans, J. S. (2019). Multi-user relay selection for full-duplex radio. IEEE Transactions on Communications, 67(2), 955–972.CrossRef
16.
go back to reference Naeem, M., Khwaja, A. S., Anpalagan, A., & Jaseemuddin, M. (2016). Green cooperative cognitive radio: A multiobjective optimization paradigm. IEEE Systems Journal, 10(1), 240–250.CrossRef Naeem, M., Khwaja, A. S., Anpalagan, A., & Jaseemuddin, M. (2016). Green cooperative cognitive radio: A multiobjective optimization paradigm. IEEE Systems Journal, 10(1), 240–250.CrossRef
17.
go back to reference Vardhe, K., Reynolds, D., & Woerner, B. D. (2010). Joint power allocation and relay selection for multiuser cooperative communication. IEEE Transactions on Wireless Communications, 9(4), 1255–1260.CrossRef Vardhe, K., Reynolds, D., & Woerner, B. D. (2010). Joint power allocation and relay selection for multiuser cooperative communication. IEEE Transactions on Wireless Communications, 9(4), 1255–1260.CrossRef
18.
go back to reference Loodaricheh, R. A., Mallick, S., & Bhargava, V. K. (2014). Energy-efficient resource allocation for OFDMA cellular networks with user cooperation and QoS provisioning. IEEE Transactions on Wireless Communications, 13(11), 6132–6146.CrossRef Loodaricheh, R. A., Mallick, S., & Bhargava, V. K. (2014). Energy-efficient resource allocation for OFDMA cellular networks with user cooperation and QoS provisioning. IEEE Transactions on Wireless Communications, 13(11), 6132–6146.CrossRef
19.
go back to reference Zhou, Z., Xiong, F., Chen, X., He, Y., & Mumtaz, S. (2018). Energy-efficient vehicular heterogeneous networks for green cities. IEEE Transactions on Industrial Informatics, 14(4), 1522–1531.CrossRef Zhou, Z., Xiong, F., Chen, X., He, Y., & Mumtaz, S. (2018). Energy-efficient vehicular heterogeneous networks for green cities. IEEE Transactions on Industrial Informatics, 14(4), 1522–1531.CrossRef
20.
go back to reference Huang, J.-H., & Hsu, S.-Y. (2015). Joint power assignment and relay location design for cooperative power-efficient networks with adaptive transmission mode selection. In IEEE WCNC. Huang, J.-H., & Hsu, S.-Y. (2015). Joint power assignment and relay location design for cooperative power-efficient networks with adaptive transmission mode selection. In IEEE WCNC.
21.
go back to reference Gao, H., Zhang, S., Su, Y., & Diao, M. (2019). Joint resource allocation and power control algorithm for cooperative D2D heterogeneous networks. IEEE Access, 7, 20632–20643.CrossRef Gao, H., Zhang, S., Su, Y., & Diao, M. (2019). Joint resource allocation and power control algorithm for cooperative D2D heterogeneous networks. IEEE Access, 7, 20632–20643.CrossRef
22.
go back to reference Sun, J., Zhang, Z., Xing, C., & Xiao, H. (2018). Uplink resource allocation for relay-aided device-to-device communication. IEEE Transactions on Intelligent Transportation Systems, 19(12), 3883–3892.CrossRef Sun, J., Zhang, Z., Xing, C., & Xiao, H. (2018). Uplink resource allocation for relay-aided device-to-device communication. IEEE Transactions on Intelligent Transportation Systems, 19(12), 3883–3892.CrossRef
23.
go back to reference Xiao, H., Zhang, Z., & Chronopoulos, A. T. (2018). Performance analysis of multi-source multi-destination cooperative vehicular networks with the hybrid decode-amplify-forward cooperative relaying protocol. IEEE Transactions on Intelligent Transportation Systems, 19(9), 3081–3086.CrossRef Xiao, H., Zhang, Z., & Chronopoulos, A. T. (2018). Performance analysis of multi-source multi-destination cooperative vehicular networks with the hybrid decode-amplify-forward cooperative relaying protocol. IEEE Transactions on Intelligent Transportation Systems, 19(9), 3081–3086.CrossRef
24.
go back to reference Bedeer, E., et al. (2015). Fairness-aware energy-efficient resource allocation for AF Co-Operative OFDMA networks. IEEE Journal on Selected Areas in Communications, 33(12), 2478–2493.CrossRef Bedeer, E., et al. (2015). Fairness-aware energy-efficient resource allocation for AF Co-Operative OFDMA networks. IEEE Journal on Selected Areas in Communications, 33(12), 2478–2493.CrossRef
25.
go back to reference Alahmadi, A., Liang, Y., Tian, R., Ren, J., & Li, T. (2019). Blocking probability analysis for relay-assisted OFDMA networks using stochastic geometry. In International conference on computing, networking and communications (ICNC). Alahmadi, A., Liang, Y., Tian, R., Ren, J., & Li, T. (2019). Blocking probability analysis for relay-assisted OFDMA networks using stochastic geometry. In International conference on computing, networking and communications (ICNC).
26.
go back to reference Efazati, S., Ghalamkari, B., Azmi, P., & Jorswieck, E. A. (2019). Quality of service performance analysis of relaying networks with multiple buffer-aided relays. IEEE Transactions on Vehicular Technology, 68(4), 4016–4026.CrossRef Efazati, S., Ghalamkari, B., Azmi, P., & Jorswieck, E. A. (2019). Quality of service performance analysis of relaying networks with multiple buffer-aided relays. IEEE Transactions on Vehicular Technology, 68(4), 4016–4026.CrossRef
27.
go back to reference Karatza, G. P., Peppas, K. P., & Sagias, N. C. (2018). Effective capacity of multisource multidestination cooperative systems under cochannel interference. IEEE Transactions on Vehicular Technology, 67(9), 8411–8421.CrossRef Karatza, G. P., Peppas, K. P., & Sagias, N. C. (2018). Effective capacity of multisource multidestination cooperative systems under cochannel interference. IEEE Transactions on Vehicular Technology, 67(9), 8411–8421.CrossRef
28.
go back to reference Qiao, D. (2019). Outage effective capacity of buffer-aided diamond relay systems using HARQ-IR. IEEE Transactions on Vehicular Technology, 68(1), 540–553.CrossRef Qiao, D. (2019). Outage effective capacity of buffer-aided diamond relay systems using HARQ-IR. IEEE Transactions on Vehicular Technology, 68(1), 540–553.CrossRef
29.
go back to reference Qiao, D., & Gursoy, M. C. (2016). Statistical delay tradeoffs in buffer-aided two-hop wireless communication systems. IEEE Transactions on Communications, 64(11), 4563–4577.CrossRef Qiao, D., & Gursoy, M. C. (2016). Statistical delay tradeoffs in buffer-aided two-hop wireless communication systems. IEEE Transactions on Communications, 64(11), 4563–4577.CrossRef
30.
go back to reference Yulin, H., Gross, J., & Schmeink, A. (2016). QoS-constrained energy efficiency of cooperative ARQ in multiple DF relay systems. IEEE Transactions on Vehicular Technology, 65(2), 848–859.CrossRef Yulin, H., Gross, J., & Schmeink, A. (2016). QoS-constrained energy efficiency of cooperative ARQ in multiple DF relay systems. IEEE Transactions on Vehicular Technology, 65(2), 848–859.CrossRef
31.
go back to reference Gross, D., Shortle, J. F., Thompson, J. M., & Harris, C. M. (2008). Fundamentals of queueing theory (4th ed.). New York: Wiley.CrossRef Gross, D., Shortle, J. F., Thompson, J. M., & Harris, C. M. (2008). Fundamentals of queueing theory (4th ed.). New York: Wiley.CrossRef
32.
go back to reference Dapeng, W., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643.CrossRef Dapeng, W., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643.CrossRef
33.
go back to reference Liu, K. J. R., Sadek, A. K., Su, W., & Kwasinski, A. (2009). Cooperative communications and networking. Cambridge: Cambridge University Press.MATH Liu, K. J. R., Sadek, A. K., Su, W., & Kwasinski, A. (2009). Cooperative communications and networking. Cambridge: Cambridge University Press.MATH
34.
go back to reference IEEE 802.16 Broadband Wireless Access Working Group. (2007). Multi-hop relay system evaluation methodology (channel model and performance metric). IEEE 802.16j-06/013r3. IEEE 802.16 Broadband Wireless Access Working Group. (2007). Multi-hop relay system evaluation methodology (channel model and performance metric). IEEE 802.16j-06/013r3.
35.
go back to reference IEEE 802.16 Broadband Wireless Access Working Group. (2005). CINR measurements using the EESM method. IEEE C802.16e-05/141r3. IEEE 802.16 Broadband Wireless Access Working Group. (2005). CINR measurements using the EESM method. IEEE C802.16e-05/141r3.
36.
go back to reference Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding broadband wireless networking. Upper Saddle River: Prentice Hall. Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding broadband wireless networking. Upper Saddle River: Prentice Hall.
37.
go back to reference Holland, J. H. (1975). Adoption in natural and artificial system. Ann Arbor, MI: The University of Michigan Press. Holland, J. H. (1975). Adoption in natural and artificial system. Ann Arbor, MI: The University of Michigan Press.
38.
go back to reference Stuber, G. L. (2012). Principles of mobile communication (3rd ed.). Berlin: Springer.CrossRef Stuber, G. L. (2012). Principles of mobile communication (3rd ed.). Berlin: Springer.CrossRef
39.
go back to reference Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover Publications.MATH Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover Publications.MATH
Metadata
Title
QoS provisioning in energy-efficient cooperative networks with power assignment and relay deployment planning
Authors
Jane-Hwa Huang
Sz-Yan Hsu
Publication date
16-06-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 7/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02375-3

Other articles of this Issue 7/2020

Wireless Networks 7/2020 Go to the issue