Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

06-06-2019 | Schwerpunktbeitrag | Issue 2/2019

Datenbank-Spektrum 2/2019

QUALM: Ganzheitliche Messung und Verbesserung der Datenqualität in der Textanalyse

Journal:
Datenbank-Spektrum > Issue 2/2019
Authors:
Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

Zusammenfassung

Bestehende Ansätze zur Messung und Verbesserung der Qualität von Textdaten in der Textanalyse bringen drei große Nachteile mit sich. Evaluationsmetriken wie zum Beispiel Accuracy messen die Qualität zwar verlässlich, sie (1) sind jedoch auf aufwändig händisch zu erstellende Goldannotationen angewiesen und (2) geben keine Ansatzpunkte für die Verbesserung der Qualität. Erste domänenspezifische Datenqualitätsmethoden für unstrukturierte Textdaten kommen zwar ohne Goldannotationen aus und geben Ansatzpunkte zur Verbesserung der Datenqualität. Diese Methoden wurden jedoch nur für begrenzte Anwendungsgebiete entwickelt und (3) berücksichtigen deshalb nicht die Spezifika vieler Analysetools in Textanalyseprozessen. In dieser Arbeit präsentieren wir hierzu das QUALM-Konzept zum qualitativ hochwertigen Mining von Textdaten (QUALity Mining), das die drei o.g. Nachteile adressiert. Das Ziel von QUALM ist es, die Qualität der Analyseergebnisse, z. B. bzgl. der Accuracy einer Textklassifikation, auf Basis einer Messung und Verbesserung der Datenqualität zu erhöhen. QUALM bietet hierzu eine Menge an QUALM-Datenqualitätsmethoden. QUALM-Indikatoren erfassen die Datenqualität ganzheitlich auf Basis der Passung zwischen den Eingabedaten und den Spezifika der Analysetools, wie den verwendeten Features, Trainingsdaten und semantischen Ressourcen (wie zum Beispiel Wörterbüchern oder Taxonomien). Zu jedem Indikator gehört ein passender Modifikator, mit dem sowohl die Daten als auch die Spezifika der Analysetools verändert werden können, um die Datenqualität zu erhöhen. In einer ersten Evaluation von QUALM zeigen wir für konkrete Analysetools und Datensätze, dass die Anwendung der QUALM-Datenqualitätsmethoden auch mit einer Erhöhung der Qualität der Analyseergebnisse im Sinne der Evaluationsmetrik Accuracy einhergeht. Die Passung zwischen Eingabedaten und Spezifika der Analysetools wird hierzu mit konkreten QUALM-Modifikatoren erhöht, die zum Beispiel Abkürzungen auflösen oder automatisch auf Basis von Textähnlichkeitsmetriken passende Trainingsdaten vorschlagen.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Show more products
Literature
About this article

Other articles of this Issue 2/2019

Datenbank-Spektrum 2/2019 Go to the issue

Editorial

Editorial

Premium Partner

    Image Credits