Skip to main content
Top

2018 | OriginalPaper | Chapter

Quantification of External Enthalpy Controlled Combustion at Unity Damköhler Number

Authors : Fabian Hampp, Rune Peter Lindstedt

Published in: Energy for Propulsion

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of external enthalpy support (e.g. via heat recirculation) can enable combustion beyond normal flammability limits and lead to significantly reduced emissions and fuel consumption. The present work quantifies the impact of such support on the combustion of lean (\(\varPhi = 0.6\)) turbulent premixed DME/air flames with a Damköhler number around unity. The flames were aerodynamically stabilised against thermally equilibrated hot combustion products (HCP) in a back-to-burnt opposed jet configuration featuring fractal grid generated multi-scale turbulence (\(Re \simeq 18{,}400\) and \(Re_t > 370\)). The bulk strain (\(a_b = 750\) s\(^{-1}\)) was of the order of the extinction strain rate (\(a_q = 600\) s\(^{-1}\)) of the corresponding laminar opposed twin flame with the mean turbulent strain (\(a_I = 3200\) s\(^{-1}\)) significantly higher. The HCP temperature (\(1600 \le T_{HCP}\)(K) \( \le 1800\)) was varied from close to the extinction point (\(T_{q} \simeq 1570\) K) of the corresponding laminar twin flame to beyond the unstrained adiabatic flame temperature (\(T_{ad} \simeq 1750\) K). The flames were characterised using simultaneous Mie scattering, OH-PLIF and PIV measurements and subjected to a multi-fluid analysis (i.e. reactants and combustion products, as well as mixing, weakly reacting and strongly reacting fluids). The study quantifies the (i) evolution of fluid state probabilities and (ii) interface statistics, (iii) unconditional and (iv) conditional velocity statistics, (v) conditional strain along fluid interfaces and (vi) scalar fluxes as a function of the external enthalpy support.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F.J. Weinberg, Combustion temperatures: the future? Nature 233, 39–241 (1971)CrossRef F.J. Weinberg, Combustion temperatures: the future? Nature 233, 39–241 (1971)CrossRef
2.
go back to reference E. Mastorakos, A.M.K.P. Taylor, J.H. Whitelaw, Extinction of turbulent counterflow flames with reactants diluted by hot products. Combust. Flame 102, 101–114 (1995)CrossRef E. Mastorakos, A.M.K.P. Taylor, J.H. Whitelaw, Extinction of turbulent counterflow flames with reactants diluted by hot products. Combust. Flame 102, 101–114 (1995)CrossRef
3.
go back to reference J.A. Wünning, J.G. Wünning, Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. 23, 81–94 (1997)CrossRef J.A. Wünning, J.G. Wünning, Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust. 23, 81–94 (1997)CrossRef
4.
go back to reference I.B. Özdemir, N. Peters, Characteristics of the reaction zone in a combustor operating at mild combustion. Exp. Fluids 30, 683–695 (2001)CrossRef I.B. Özdemir, N. Peters, Characteristics of the reaction zone in a combustor operating at mild combustion. Exp. Fluids 30, 683–695 (2001)CrossRef
5.
go back to reference Z. Zhao, A. Kazakov, J. Li, F.L. Dryer, The initial temperature and N\(_2\) dilution effect on the laminar flame speed of propane/air. Combust. Sci. Technol. 176, 1705–1723 (2004)CrossRef Z. Zhao, A. Kazakov, J. Li, F.L. Dryer, The initial temperature and N\(_2\) dilution effect on the laminar flame speed of propane/air. Combust. Sci. Technol. 176, 1705–1723 (2004)CrossRef
6.
go back to reference H.J. Curran, S.L. Fischer, F.L. Dryer, Reaction kinetics of dimethylether. II: Low-temperature oxidation in flow reactors. Int. J. Chem. Kinet. 32, 741–759 (2000)CrossRef H.J. Curran, S.L. Fischer, F.L. Dryer, Reaction kinetics of dimethylether. II: Low-temperature oxidation in flow reactors. Int. J. Chem. Kinet. 32, 741–759 (2000)CrossRef
7.
go back to reference R. Lückerath, W. Meier, M. Aigner, FLOX combustion at high pressure with different fuel compositions. J. Eng. Gas Turb. Power 130, 011505 (2008)CrossRef R. Lückerath, W. Meier, M. Aigner, FLOX combustion at high pressure with different fuel compositions. J. Eng. Gas Turb. Power 130, 011505 (2008)CrossRef
8.
go back to reference T. Plessing, N. Peters, J.G. Wünning, Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Proc. Combust. Inst. 27, 3197–3204 (1998)CrossRef T. Plessing, N. Peters, J.G. Wünning, Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Proc. Combust. Inst. 27, 3197–3204 (1998)CrossRef
9.
go back to reference J. Sidey, E. Mastorakos, R.L. Gordon, Simulations of autoignition and laminar premixed flames in methane/air mixtures diluted with hot products. Combust. Sci. Technol. 186, 453–465 (2014)CrossRef J. Sidey, E. Mastorakos, R.L. Gordon, Simulations of autoignition and laminar premixed flames in methane/air mixtures diluted with hot products. Combust. Sci. Technol. 186, 453–465 (2014)CrossRef
10.
go back to reference Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Reaction zones and their structure in MILD combustion. Combust. Sci. Technol. 186, 1075–1096 (2014)CrossRef Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Reaction zones and their structure in MILD combustion. Combust. Sci. Technol. 186, 1075–1096 (2014)CrossRef
11.
go back to reference B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, X.-S. Bai, Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization. Combust. Flame 162, 2937–2953 (2015)CrossRef B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, X.-S. Bai, Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization. Combust. Flame 162, 2937–2953 (2015)CrossRef
12.
go back to reference B. Zhou, C. Brackmann, Z. Li, M. Aldén, X.-S. Bai, Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime. Proc. Combust. Inst. 35, 1409–1416 (2015)CrossRef B. Zhou, C. Brackmann, Z. Li, M. Aldén, X.-S. Bai, Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime. Proc. Combust. Inst. 35, 1409–1416 (2015)CrossRef
13.
go back to reference B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, X.-S. Bai, Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations. Combust. Flame 175, 220–236 (2016)CrossRef B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, X.-S. Bai, Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations. Combust. Flame 175, 220–236 (2016)CrossRef
14.
go back to reference A.R. Masri, R.W. Dibble, R.S. Barlow, The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci. 22, 307–362 (1996)CrossRef A.R. Masri, R.W. Dibble, R.S. Barlow, The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci. 22, 307–362 (1996)CrossRef
15.
go back to reference R.S. Barlow, J.H. Frank, Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Comb. Inst. 27, 1087–1095 (1998)CrossRef R.S. Barlow, J.H. Frank, Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Comb. Inst. 27, 1087–1095 (1998)CrossRef
16.
go back to reference D. Geyer, A. Kempf, A. Dreizler, J. Janicka, Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)CrossRef D. Geyer, A. Kempf, A. Dreizler, J. Janicka, Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)CrossRef
17.
go back to reference K.H.H. Goh, P. Geipel, R.P. Lindstedt, Lean premixed opposed jet flames in fractal grid generated multiscale turbulence. Combust. Flame 161, 2419–2434 (2014)CrossRef K.H.H. Goh, P. Geipel, R.P. Lindstedt, Lean premixed opposed jet flames in fractal grid generated multiscale turbulence. Combust. Flame 161, 2419–2434 (2014)CrossRef
19.
go back to reference B. Coriton, J.H. Frank, A. Gomez, Effects of strain rate, turbulence, reactant stoichiometry and heat losses on the interaction of turbulent premixed flames with stoichiometric counterflowing combustion products. Combust. Flame 160, 2442–2456 (2013)CrossRef B. Coriton, J.H. Frank, A. Gomez, Effects of strain rate, turbulence, reactant stoichiometry and heat losses on the interaction of turbulent premixed flames with stoichiometric counterflowing combustion products. Combust. Flame 160, 2442–2456 (2013)CrossRef
20.
go back to reference K.H.H. Goh, P. Geipel, F. Hampp, R.P. Lindstedt, Regime transition from premixed to flameless oxidation in turbulent JP-10 flames. Proc. Combust. Inst. 34, 3311–3318 (2013)CrossRef K.H.H. Goh, P. Geipel, F. Hampp, R.P. Lindstedt, Regime transition from premixed to flameless oxidation in turbulent JP-10 flames. Proc. Combust. Inst. 34, 3311–3318 (2013)CrossRef
21.
go back to reference K.H.H. Goh, P. Geipel, R.P. Lindstedt, Turbulent transport in premixed flames approaching extinction. Proc. Combust. Inst. 35, 1469–1476 (2015)CrossRef K.H.H. Goh, P. Geipel, R.P. Lindstedt, Turbulent transport in premixed flames approaching extinction. Proc. Combust. Inst. 35, 1469–1476 (2015)CrossRef
22.
go back to reference F. Hampp, R.P. Lindstedt, Quantification of combustion regime transitions in premixed turbulent DME flames. Combust. Flame 182, 248–268 (2017)CrossRef F. Hampp, R.P. Lindstedt, Quantification of combustion regime transitions in premixed turbulent DME flames. Combust. Flame 182, 248–268 (2017)CrossRef
23.
go back to reference F. Hampp, R.P. Lindstedt, Strain distribution on material surfaces during combustion regime transitions. Proc. Combust. Inst. 36, 1911–1918 (2017)CrossRef F. Hampp, R.P. Lindstedt, Strain distribution on material surfaces during combustion regime transitions. Proc. Combust. Inst. 36, 1911–1918 (2017)CrossRef
24.
go back to reference B. Coriton, M.D. Smooke, A. Gomez, Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flames. Combust. Flame 157, 2155–2164 (2000)CrossRef B. Coriton, M.D. Smooke, A. Gomez, Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flames. Combust. Flame 157, 2155–2164 (2000)CrossRef
25.
go back to reference E. Abtahizadeh, J. van Oijen, P. de Goey, Numerical study of mild combustion with entrainment of burned gas into oxidizer and/or fuel streams. Combust. Flame 159, 2155–2165 (2012)CrossRef E. Abtahizadeh, J. van Oijen, P. de Goey, Numerical study of mild combustion with entrainment of burned gas into oxidizer and/or fuel streams. Combust. Flame 159, 2155–2165 (2012)CrossRef
26.
go back to reference T. Fleisch, C. McCarthy, A. Basu, C. Udovich, P. Charbonneau, W. Slodowske, S.-E. Mikkelsen, J. McCandless, A new clean diesel technology: demonstration of ULEV emissions on a Navistar diesel engine fueled with dimethyl ether, SAE, 950061 (1995) T. Fleisch, C. McCarthy, A. Basu, C. Udovich, P. Charbonneau, W. Slodowske, S.-E. Mikkelsen, J. McCandless, A new clean diesel technology: demonstration of ULEV emissions on a Navistar diesel engine fueled with dimethyl ether, SAE, 950061 (1995)
27.
go back to reference S.C. Sorenson, S.E. Mikkelsen, Performance and emissions of a 0.273 liter direct injection diesel engine fuelled with neat dimethyl ether, SAE, 950064 (1995) S.C. Sorenson, S.E. Mikkelsen, Performance and emissions of a 0.273 liter direct injection diesel engine fuelled with neat dimethyl ether, SAE, 950064 (1995)
29.
go back to reference K.N.C. Bray, Laminar flamelets and the Bray, Moss, and Libby Model, in Turbulent Premixed Flames, ed. by N. Swaminathan, K.N.C. Bray (Cambridge University Press, 2001), pp. 41–60. ISBN: 978-0-521-76961-7 K.N.C. Bray, Laminar flamelets and the Bray, Moss, and Libby Model, in Turbulent Premixed Flames, ed. by N. Swaminathan, K.N.C. Bray (Cambridge University Press, 2001), pp. 41–60. ISBN: 978-0-521-76961-7
31.
go back to reference F. Hampp, R.P. Lindstedt, Fractal grid generated turbulence—a bridge to practical combustion applications, in Fractal Flow Design: How to Design Bespoke Turbulence and Why. CISM International Centre for Mechanical Sciences 568, ed. by Y. Sakai, C. Vassilicos (Springer, 2016). https://doi.org/10.1007/978-3-319-33310-6_3 F. Hampp, R.P. Lindstedt, Fractal grid generated turbulence—a bridge to practical combustion applications, in Fractal Flow Design: How to Design Bespoke Turbulence and Why. CISM International Centre for Mechanical Sciences 568, ed. by Y. Sakai, C. Vassilicos (Springer, 2016). https://​doi.​org/​10.​1007/​978-3-319-33310-6_​3
32.
go back to reference P. Geipel, K.H.H. Goh, R.P. Lindstedt, Fractal-generated turbulence in opposed jet flows. Flow Turbul. Combust. 85, 397–419 (2010)CrossRef P. Geipel, K.H.H. Goh, R.P. Lindstedt, Fractal-generated turbulence in opposed jet flows. Flow Turbul. Combust. 85, 397–419 (2010)CrossRef
33.
go back to reference K.H.H. Goh, P. Geipel, F. Hampp, R.P. Lindstedt, Flames in fractal grid generated turbulence. Fluid Dyn. Res. 45, 061403 (2013)CrossRef K.H.H. Goh, P. Geipel, F. Hampp, R.P. Lindstedt, Flames in fractal grid generated turbulence. Fluid Dyn. Res. 45, 061403 (2013)CrossRef
34.
go back to reference N. Peters, Kinetic foundation of thermal flame theory, in, Advances in Combustion Science: In Honor of Y. B. Zel’dovich. Progress in Astronautics and Aeronautics 173, ed. by W.A. Sirignano, A.G. Merzhanov, L. de Luca (AIAA, 1997), pp. 73–91 N. Peters, Kinetic foundation of thermal flame theory, in, Advances in Combustion Science: In Honor of Y. B. Zel’dovich. Progress in Astronautics and Aeronautics 173, ed. by W.A. Sirignano, A.G. Merzhanov, L. de Luca (AIAA, 1997), pp. 73–91
35.
go back to reference J. Kerl, T. Sponfeldner, F. Beyrau, An external Raman laser for combustion diagnostics. Combust. Flame 158, 1905–1907 (2011)CrossRef J. Kerl, T. Sponfeldner, F. Beyrau, An external Raman laser for combustion diagnostics. Combust. Flame 158, 1905–1907 (2011)CrossRef
37.
go back to reference W.P. Jones, R.P. Lindstedt, The calculation of the structure of laminar counterflow diffusion flames using a global reaction mechanism. Combust. Sci. Technol. 61, 31–49 (1988)CrossRef W.P. Jones, R.P. Lindstedt, The calculation of the structure of laminar counterflow diffusion flames using a global reaction mechanism. Combust. Sci. Technol. 61, 31–49 (1988)CrossRef
38.
go back to reference J. Sidey, E. Mastorakos, Visualization of MILD combustion from jets in cross-flow. Proc. Combust. Inst. 35, 3537–3545 (2015)CrossRef J. Sidey, E. Mastorakos, Visualization of MILD combustion from jets in cross-flow. Proc. Combust. Inst. 35, 3537–3545 (2015)CrossRef
39.
go back to reference Y. Minamoto, N. Swaminathan, Scalar gradient behaviour in MILD combustion. Combust. Flame 161, 1063–1075 (2014)CrossRef Y. Minamoto, N. Swaminathan, Scalar gradient behaviour in MILD combustion. Combust. Flame 161, 1063–1075 (2014)CrossRef
40.
go back to reference Y. Minamoto, N. Swaminathan, S.R. Cant, T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161, 2801–2814 (2014)CrossRef Y. Minamoto, N. Swaminathan, S.R. Cant, T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161, 2801–2814 (2014)CrossRef
41.
go back to reference W.K. George, H.J. Hussein, Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23 (1991)CrossRef W.K. George, H.J. Hussein, Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23 (1991)CrossRef
42.
go back to reference I.G. Shepherd, R.K. Cheng, P.J. Goix, The spatial scalar structure of premixed turbulent stagnation point flames. Proc. Combust. Inst. 23, 781–787 (1991)CrossRef I.G. Shepherd, R.K. Cheng, P.J. Goix, The spatial scalar structure of premixed turbulent stagnation point flames. Proc. Combust. Inst. 23, 781–787 (1991)CrossRef
43.
go back to reference A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44, 985–999 (2008)CrossRef A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44, 985–999 (2008)CrossRef
44.
go back to reference B. Böhm, C. Heeger, I. Boxx, W. Meier, A. Dreizler, Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)CrossRef B. Böhm, C. Heeger, I. Boxx, W. Meier, A. Dreizler, Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)CrossRef
45.
go back to reference B.E. Battles, R.K. Hanson, Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation. J. Quant. Spectrosc. Radiat. Transf. 54, 521–537 (1995)CrossRef B.E. Battles, R.K. Hanson, Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation. J. Quant. Spectrosc. Radiat. Transf. 54, 521–537 (1995)CrossRef
46.
go back to reference S. Krishna, R.V. Ravikrishna, Quantitative OH planar laser induced fluorescence diagnostics of syngas and methane combustion in a cavity combustor. Combust. Sci. Technol. 187, 1661–1682 (2015)CrossRef S. Krishna, R.V. Ravikrishna, Quantitative OH planar laser induced fluorescence diagnostics of syngas and methane combustion in a cavity combustor. Combust. Sci. Technol. 187, 1661–1682 (2015)CrossRef
47.
go back to reference K.A. Buch, W.J.A. Dahm, Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc = 1. J. Fluid Mech. 364, 1–29 (1998)CrossRef K.A. Buch, W.J.A. Dahm, Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc = 1. J. Fluid Mech. 364, 1–29 (1998)CrossRef
48.
go back to reference G.K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)MathSciNetCrossRef G.K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)MathSciNetCrossRef
49.
go back to reference G. Hartung, J. Hult, C.F. Kaminski, J.W. Rogerson, N. Swaminathan, Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20, 035110 (2008)CrossRef G. Hartung, J. Hult, C.F. Kaminski, J.W. Rogerson, N. Swaminathan, Effect of heat release on turbulence and scalar-turbulence interaction in premixed combustion. Phys. Fluids 20, 035110 (2008)CrossRef
50.
go back to reference N. Chakraborty, N. Swaminathan, Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19, 045103 (2007)CrossRef N. Chakraborty, N. Swaminathan, Influence of the Damköhler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19, 045103 (2007)CrossRef
Metadata
Title
Quantification of External Enthalpy Controlled Combustion at Unity Damköhler Number
Authors
Fabian Hampp
Rune Peter Lindstedt
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7473-8_8