Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-03-2020 | Production Management | Issue 3/2020

Production Engineering 3/2020

Quantifying disturbance risks on the process time for a robust, synchronized individual production

Journal:
Production Engineering > Issue 3/2020
Authors:
Timo Heutmann, Alexander W. Tils, Robert H. Schmitt
Important notes
The research project PARSyP—Predictive Analytics for Robust Synchronized Production is funded within the BMBF funding measure KMU-innovative: Information and Communication Technologies under the grant number 01IS16034A-F, Bundesministerium für Bildung und Forschung.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Due to high product variability, determining the risk of a disturbance for a production-process chain requires frequent as well as deliberate determination. If a disturbance becomes effective, it will have a tremendous negative effect on the adherence to delivery dates. This applies also to the synchronized individual production (SIP) principle. Accordingly, the principle lacks robustness in scientific as well as in industrial application. For this reason, this paper proposes an approach to quantify disturbance risks that lead to uncertain process times that prevent a robust SIP. The quantification methodology consists of a system definition, risk identification, and risk quantification. The assessment includes extending the risk matrix, adjusting the Failure Mode and Effects Analysis, plus determining general influence possibilities for each risk type. The proposed approach enables production planners to consider time uncertainty in form of a risk figure when determining nominal process times for each product or the production schedule. Consequently, delivery dates are more feasible and its adherence leads to a higher internal adherence to delivery of the production. The proposed approach has a high practical orientation, making its application easy on real production-process chains in a SIP.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2020

Production Engineering 3/2020 Go to the issue

Premium Partners

    Image Credits