Skip to main content
Top

2020 | OriginalPaper | Chapter

Quantifying Quality of Actions Using Wearable Sensor

Authors : Mohammad Al-Naser, Takehiro Niikura, Sheraz Ahmed, Hiroki Ohashi, Takuto Sato, Mitsuhiro Okada, Katsuyuki Nakamura, Andreas Dengel

Published in: Advanced Analytics and Learning on Temporal Data

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper introduces a novel approach to quantify the quality of human actions. The presented approach uses expert action data to define the space in order to gauge the performance of any user to identify expertise level. The proposed approach uses pose estimation model to identify different body attributes (legs, shoulders, head ...) status (left, right, bend, curl ...), which is further passed to autoencoder to have a latent representation encoding all the relevant information. This encoded representation is further passed to OneClass SVM to estimate the boundaries based on latent representation of expert data. These learned boundaries are used to gauge the quality of any questioned user with respect to the selected expert. The proposed approach enables identifying any critical situations in real work environment to avoid risky positions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
4.
go back to reference Bačić, B.: Towards the next generation of exergames: flexible and personalised assessment-based identification of tennis swings (2018) Bačić, B.: Towards the next generation of exergames: flexible and personalised assessment-based identification of tennis swings (2018)
5.
go back to reference Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Anomaly detection using autoencoders in high performance computing systems. CoRR abs/1811.05269 (2018) Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Anomaly detection using autoencoders in high performance computing systems. CoRR abs/1811.05269 (2018)
6.
go back to reference Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4733 (2017) Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4733 (2017)
7.
go back to reference Doughty, H., Damen, D., Mayol-Cuevas, W.W.: Who’s better? Who’s best? Pairwise deep ranking for skill determination. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6057–6066 (2018) Doughty, H., Damen, D., Mayol-Cuevas, W.W.: Who’s better? Who’s best? Pairwise deep ranking for skill determination. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6057–6066 (2018)
8.
go back to reference Doughty, H., Mayol-Cuevas, W.W., Damen, D.: The pros and cons: rank-aware temporal attention for skill determination in long videos. CoRR abs/1812.05538 (2018) Doughty, H., Mayol-Cuevas, W.W., Damen, D.: The pros and cons: rank-aware temporal attention for skill determination in long videos. CoRR abs/1812.05538 (2018)
9.
go back to reference Gaglio, S., Re, G.L., Morana, M.: Human activity recognition process using 3-D posture data. IEEE Trans. Hum.-Mach. Syst. 45(5), 586–597 (2015) CrossRef Gaglio, S., Re, G.L., Morana, M.: Human activity recognition process using 3-D posture data. IEEE Trans. Hum.-Mach. Syst. 45(5), 586–597 (2015) CrossRef
10.
11.
go back to reference Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4, 36 (2018)CrossRef Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4, 36 (2018)CrossRef
12.
go back to reference Ladha, C., Hammerla, N.Y., Olivier, P., Plötz, T.: ClimbAX: skill assessment for climbing enthusiasts. In: UbiComp (2013) Ladha, C., Hammerla, N.Y., Olivier, P., Plötz, T.: ClimbAX: skill assessment for climbing enthusiasts. In: UbiComp (2013)
17.
go back to reference Parisi, G.I., Magg, S., Wermter, S.: Human motion assessment in real time using recurrent self-organization. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 71–76 (2016) Parisi, G.I., Magg, S., Wermter, S.: Human motion assessment in real time using recurrent self-organization. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 71–76 (2016)
21.
22.
go back to reference Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2018)CrossRef Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2018)CrossRef
24.
go back to reference Zhang, W., Qin, L., Zhong, W., Guo, X., Wang, G.: Framework of sequence chunking for human activity recognition using wearables. In: Proceedings of the 2019 International Conference on Image, Video and Signal Processing. IVSP 2019, pp. 93–98. ACM, New York (2019). https://doi.org/10.1145/3317640.3317647 Zhang, W., Qin, L., Zhong, W., Guo, X., Wang, G.: Framework of sequence chunking for human activity recognition using wearables. In: Proceedings of the 2019 International Conference on Image, Video and Signal Processing. IVSP 2019, pp. 93–98. ACM, New York (2019). https://​doi.​org/​10.​1145/​3317640.​3317647
Metadata
Title
Quantifying Quality of Actions Using Wearable Sensor
Authors
Mohammad Al-Naser
Takehiro Niikura
Sheraz Ahmed
Hiroki Ohashi
Takuto Sato
Mitsuhiro Okada
Katsuyuki Nakamura
Andreas Dengel
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39098-3_15

Premium Partner