Skip to main content
Top
Published in: Acta Mechanica Sinica 4/2016

29-04-2016 | Research Paper

Quantitative law of diffusion induced fracture

Authors: H.-J. Lei, H.-L. Wang, B. Liu, C.-A. Wang

Published in: Acta Mechanica Sinica | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Through dimension analysis, an almost analytical model for the maximum diffusion induced stress (DIS) and critical temperature (or concentration) difference at which cracks begin to initiate in the diffusion process is developed. It interestingly predicts that the spacing of diffusion-induced cracks is constant, independent of the thickness of specimen and the temperature difference. These conclusions are validated by our thermal shock experiments on alumina plates. Furthermore, the proposed model can interpret observed hierarchical crack patterns for high temperature jump cases, and a three-stage relation between the residual strength and the temperature difference. The prediction for crack spacing can guide the biomimetic thermal-shock-failure proof design, in which the hard platelets smaller than the predicted diffusion induced by constant crack-spacing are embedded in a soft matrix, and, therefore, no fracture will happen. This may guide the design of the thermal protection system and the lithium ion battery. Finally we present the maximum normalized DISes for various geometry and boundary conditions by single-variable curves for the stress-independent diffusion process and two-variable contour plots for the stress-dependent diffusion process, which can provide engineers and materialists a simple and easy way to quickly evaluate the reliability of related materials and devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference Bahr, H.A., Fischer, G., Weiss, H.J.: Thermal-shock crack patterns explained by single and multiple crack-propagation. J. Mater. Sci. 21, 2716–2720 (1986). doi:10.1007/BF00551478 CrossRef Bahr, H.A., Fischer, G., Weiss, H.J.: Thermal-shock crack patterns explained by single and multiple crack-propagation. J. Mater. Sci. 21, 2716–2720 (1986). doi:10.​1007/​BF00551478 CrossRef
7.
go back to reference Manson, S.S.: Behaviour of materials under conditions of thermal stress. Nat. Advis. Commun. Aeromaut. Rep. 1, 170 (1954) Manson, S.S.: Behaviour of materials under conditions of thermal stress. Nat. Advis. Commun. Aeromaut. Rep. 1, 170 (1954)
16.
go back to reference Monteverde, F., Guicciardi, S., Melandri, C. et al. Densification, microstructure evolution and mechanical properties of ultrafine sic particle-dispersed Zrb2 matrix composites. Nato Sec. Sci. B Phys, 261-272 (2010). doi:10.1007/978-90-481-9818-4_17 Monteverde, F., Guicciardi, S., Melandri, C. et al. Densification, microstructure evolution and mechanical properties of ultrafine sic particle-dispersed Zrb2 matrix composites. Nato Sec. Sci. B Phys, 261-272 (2010). doi:10.​1007/​978-90-481-9818-4_​17
19.
go back to reference Woodford, W.H., Carter, W.C., Chiang, Y.M.: Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014–8024 (2012). doi:10.1039/c2ee21874g CrossRef Woodford, W.H., Carter, W.C., Chiang, Y.M.: Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014–8024 (2012). doi:10.​1039/​c2ee21874g CrossRef
20.
go back to reference Thackeray, M.M., Shao-Horn, Y., Kahaian, A.J., et al.: Structural fatigue in spinel electrodes in high voltage (4V) Li/\(\text{ Li }_{x}\text{ Mn }_{2}\text{ O }_{4}\) cells. Electrochem. Solid St 1, 7–9 (1998). doi:10.1149/1.1390617 CrossRef Thackeray, M.M., Shao-Horn, Y., Kahaian, A.J., et al.: Structural fatigue in spinel electrodes in high voltage (4V) Li/\(\text{ Li }_{x}\text{ Mn }_{2}\text{ O }_{4}\) cells. Electrochem. Solid St 1, 7–9 (1998). doi:10.​1149/​1.​1390617 CrossRef
22.
go back to reference Tucker, M.C., Kroeck, L., Reimer, J.A., et al.: The influence of covalence on capacity retention in metal-substituted spinels-Li-7 NMR, SQUID, and electrochemical studies. J. Electrochem. Soc. 149, A1409–A1413 (2002). doi:10.1149/1.1510766 CrossRef Tucker, M.C., Kroeck, L., Reimer, J.A., et al.: The influence of covalence on capacity retention in metal-substituted spinels-Li-7 NMR, SQUID, and electrochemical studies. J. Electrochem. Soc. 149, A1409–A1413 (2002). doi:10.​1149/​1.​1510766 CrossRef
23.
go back to reference Huggins, R.A., Nix, W.D.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000). doi:10.1007/BF02375547 CrossRef Huggins, R.A., Nix, W.D.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000). doi:10.​1007/​BF02375547 CrossRef
25.
go back to reference Verbrugge, M.W., Cheng, Y.T.: Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations. J. Electrochem. Soc. 156, A927–A937 (2009). doi:10.1149/1.3205485 CrossRef Verbrugge, M.W., Cheng, Y.T.: Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations. J. Electrochem. Soc. 156, A927–A937 (2009). doi:10.​1149/​1.​3205485 CrossRef
26.
go back to reference Cheng, Y.T., Verbrugge, M.W.: Application of Hasselman’s crack propagation model to insertion electrodes. Electrochem. Solid State 13, A128–A131 (2010). doi:10.1149/1.3455179 CrossRef Cheng, Y.T., Verbrugge, M.W.: Application of Hasselman’s crack propagation model to insertion electrodes. Electrochem. Solid State 13, A128–A131 (2010). doi:10.​1149/​1.​3455179 CrossRef
27.
go back to reference Cheng, Y.T., Verbrugge, M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157, A508–A516 (2010). doi:10.1149/1.3298892 CrossRef Cheng, Y.T., Verbrugge, M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157, A508–A516 (2010). doi:10.​1149/​1.​3298892 CrossRef
28.
go back to reference Woodford, W.H., Chiang, Y.M., Carter, W.C.: Electrochemical shock of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–A1059 (2010). doi:10.1149/1.3464773 CrossRef Woodford, W.H., Chiang, Y.M., Carter, W.C.: Electrochemical shock of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–A1059 (2010). doi:10.​1149/​1.​3464773 CrossRef
29.
go back to reference Deshpande, R., Cheng, Y.T., Verbrugge, M.W., et al.: Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. 158, A718–A724 (2011). doi:10.1149/1.3565183 CrossRef Deshpande, R., Cheng, Y.T., Verbrugge, M.W., et al.: Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. 158, A718–A724 (2011). doi:10.​1149/​1.​3565183 CrossRef
30.
go back to reference Zhang, X.C., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910–A916 (2007). doi:10.1149/1.2759840 CrossRef Zhang, X.C., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910–A916 (2007). doi:10.​1149/​1.​2759840 CrossRef
31.
32.
go back to reference Park, J., Lu, W., Sastry, A.M.: Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 158, A201–A206 (2011). doi:10.1149/1.3526597 CrossRef Park, J., Lu, W., Sastry, A.M.: Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 158, A201–A206 (2011). doi:10.​1149/​1.​3526597 CrossRef
35.
go back to reference Bower, A.F., Guduru, P.R.: A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials. Model. Simul. Mater. Sci. Eng. 20, 045004 (2012). doi:10.1088/0965-0393/20/4/045004 Bower, A.F., Guduru, P.R.: A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials. Model. Simul. Mater. Sci. Eng. 20, 045004 (2012). doi:10.​1088/​0965-0393/​20/​4/​045004
36.
go back to reference Zhao, K.J., Tritsaris, G.A., Pharr, M., et al.: Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Lett. 12, 4397–4403 (2012). doi:10.1021/nl302261w CrossRef Zhao, K.J., Tritsaris, G.A., Pharr, M., et al.: Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Lett. 12, 4397–4403 (2012). doi:10.​1021/​nl302261w CrossRef
38.
go back to reference Xiao, X., Liu, P., Verbrugge, M.W., et al.: Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J. Power Sour. 196, 1409–1416 (2011). doi:10.1016/j.jpowsour.2010.08.058 Xiao, X., Liu, P., Verbrugge, M.W., et al.: Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J. Power Sour. 196, 1409–1416 (2011). doi:10.​1016/​j.​jpowsour.​2010.​08.​058
39.
go back to reference Vanimisetti, S.K., Ramakrishnan, N.: Effect of the electrode particle shape in Li-ion battery on the mechanical degradation during charge-discharge cycling. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 226, 2192–2213 (2012). doi:10.1177/0954406211432668 Vanimisetti, S.K., Ramakrishnan, N.: Effect of the electrode particle shape in Li-ion battery on the mechanical degradation during charge-discharge cycling. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 226, 2192–2213 (2012). doi:10.​1177/​0954406211432668​
42.
go back to reference Cardarelli, F.: Materials Handbook: A Concise Desktop Reference, 2nd edn. Springer, London (2008) Cardarelli, F.: Materials Handbook: A Concise Desktop Reference, 2nd edn. Springer, London (2008)
44.
go back to reference Touloukian, Y.S., Ho, C.Y.: Thermophysical Properties of Matter. Thermal Conductivity of Nonmetallic Solids, vol. 2. Plenum Press, New York (1972) Touloukian, Y.S., Ho, C.Y.: Thermophysical Properties of Matter. Thermal Conductivity of Nonmetallic Solids, vol. 2. Plenum Press, New York (1972)
46.
go back to reference Li, J.C., Dozier, A.K., Li, Y.C., et al.: Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes. J. Electrochem. Soc. 158, A689–A694 (2011). doi:10.1149/1.3574027 CrossRef Li, J.C., Dozier, A.K., Li, Y.C., et al.: Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes. J. Electrochem. Soc. 158, A689–A694 (2011). doi:10.​1149/​1.​3574027 CrossRef
Metadata
Title
Quantitative law of diffusion induced fracture
Authors
H.-J. Lei
H.-L. Wang
B. Liu
C.-A. Wang
Publication date
29-04-2016
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 4/2016
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0545-z

Other articles of this Issue 4/2016

Acta Mechanica Sinica 4/2016 Go to the issue

Premium Partners